Project description:We performed RNA-seq analysis of the root transcriptional response to Fusarium oxysporum f.sp. vasinfectum (FOV) race 4 (FOV4) infection in Gossypium barbadense, also known as Pima cotton. Susceptible Gossypium barbadense inbred lines Pima S-7 (PI 560140) and Pima 3-79 susceptible to Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV)] race 4 (FOV4), and Pima S-6 (PI 608346) which is resistant to FOV4 infection, were used for the preparation of cDNA libraries and further RNA-seq analyses. An isolate of FOV4 (FOV CA-14) from a naturally infested field in Fresno County in the San Joaquin Valley, California was used in this study.
Project description:Deep sequencing of mRNA from Fusarium oxysporum f. sp. Cubense 1 and 4 after infecting Musa acuminata 0h and 48h. Analysis of ploy(A)+ RNA of different hours after infecting of Musa acuminata
Project description:We report the first data of RNA sequencing of banana Musa acuminata cv. Pisang ambon kuning (AAA group) inoculated by two different endophyte bacteria named Stenothropomonas nitritireducens (BR-49) and Kocuria rhizophila (SL-08), respectively, prior to Fusarium oxysprorum f.sp. cubense tropical race 4 (Foc TR4).
Project description:The soil-borne fungal pathogen Fusarium oxysporum f.sp. is responsible for Fusarium wilt. cubense tropical race 4, is one of the most devastating diseases in bananas, regarded as a major yield-reducing factor in the banana industry worldwide. Understanding the molecular interactions in banana defense responses is an important tool to reveal the unexplained processes that underlie banana resistance to Fusarium oxysporum f. sp. cubense tropical race 4. The seedlings of moderately resistant variety Guijiao No. 9 and a susceptible cultivar Guijiao No. 6 were cultured in tissue culture, and the characterize protein profile expression changes responses to after inoculation the Fusarium oxysporum f. sp. of cubense tropical race 4 were detected by isobaric labeling based on MS2 quantification at the 2nd, 4th, 6th and 8th day. Interestingly, new genes in the resistance of banana to Foc37-GFP were identified, including several other serine/threonine-protein kinase, AvrRpt-cleavage domain-containing protein, peptidylprolyl isomerase and some Jacalin-type lectin domain, the resistance-related pathways “ribosome”, “microbial metabolism in diverse environments”,“carbon metabolism”,“biosynthesis of amino acids”and “biosynthesis of antibiotics” pathways were significantly enriched, the resistant banana cultivar Guijiao 9 shows formation of different constitutive cell barriers to restrict spreading of Fusarium oxysporum f. sp. cubense tropical race 4. In this study, the dynamic change root proteomic of moderately resistant cultivar Guijiao 9 and a susceptible cultivar Guijiao 6 were characterized and provided a differentially expressed proteins comparative analysis of the compatible and incompatible interaction between Fusarium oxysporum f. sp. cubense tropical race 4 and banana. These findings provide a substantial contribution to existing sequence resources for banana, and a strong basis for future proteomic research. The proteins that displayed two-fold changes in intensity are related to biochemical processes that may be differentially altered at various times after Fusarium oxysporum f. sp. cubense tropical race 4 infection. These findings will accelerate research on resistance in banana to Fusarium oxysporum f. sp. cubense tropical race 4 and contribute to a better understanding of the banana defense mechanism to plant pathogens, hopefully.
Project description:Melon RNA-Seq analysis was used to identify candidate resistance genes and to understand the early molecular processes deployed during melon versus Fusarium oxysporum f.sp. melonis Snyd. & Hans race 1.2 (FOM1.2) interaction in the resistant doubled haploid line NAD as opposed to the susceptible genotype Charentais-T at 24 and 48 hours post inoculation (hpi).
Project description:Xylem sap proteome studies on susceptible or resistant tomato (Solanum lycopersicum) inoculated with endophytic and/or pathogenic strains of Fusarium oxysporum f.sp. lycopersici were conducted to get insights into the molecular differences between endophyte- and R-gene-mediated resistance (EMR and RMR). The EMR and RMR proteomes were compared to each other and to the mock control. Interestingly, specific PR-5 isoforms were found to exclusively accumulate during endophyte or genetic resistance, providing excellent markers to distinguish both resistance types at the molecular level.
2019-11-14 | PXD011072 | Pride
Project description:Genome sequencing and assembly of Fusarium oxysporum f.sp. raphani and Fusarium oxysporum f.sp. rapae