Project description:In Hawaii, a rapidly-evolving mutation in the field cricket Teleogryllus oceanicus silences males by interfering with the development of sound-producing structures on their forewings. The mutation is called flatwing (fw), and it persists because of natural selection imposed by an acoustically-orienting parasitoid. We examined gene expression differences between wild-type and mutant crickets, focusing on juvenile wing buds. We profiled mRNA expression levels using RNA-seq, and characterized the wing bud proteome using quantitative mass spectrometry.
Project description:In Hawaii, a rapidly-evolving mutation in the field cricket Teleogryllus oceanicus silences males by interfering with the development of sound-producing structures on their forewings. The mutation is called flatwing (fw), and it persists because of natural selection imposed by an acoustically-orienting parasitoid. We examined gene expression differences between wild-type and mutant crickets, focusing on juvenile wing buds. We profiled mRNA expression levels using RNA-seq, and characterized the wing bud proteome using quantitative mass spectrometry. Accessing protein expression profiles under the same experimental conditions enabled us to test correspondence between the two ‘omic levels.