Project description:Purkinje cells (PC) of the cerebellum degenerate in adult mice with mutations in the Niemann-Pick type C (NPC) disease 1 (Npc1) gene. We subjected BALB/c Npc1+/+ and Npc1-/- mouse cerebella from an early and a later time point of PC degeneration to a genome-wide microarray gene expression analysis. We found general underrepresentation of PC-specific transcripts, consistent with PC loss, and elevated markers of microglia activation at the later time point. Keywords: Niemann-Pick type C, Purkinje cell degeneration
Project description:Macrophage inflammatory protein 1alpha/CCL3 protein is a known pro-inflammatory cytokine that can mediate chemotaxis of monocytes and promote cell degranulation. Ccl3 gene expression is elevated in the CNS and visceral tissue of many lysosomal storage disorders. The deletion of Ccl3 in a mouse model of Sandhoff disease was reported to result in reduced monocyte-associated pathology in the brain, delayed neurodegeneration, and prolonged health. However, deletion of Ccl3 in a mouse model of Niemann-Pick C disease was dentrimental or neutral instead of beneficial. Prevention of neuronal loss was instead mediated by providing NPC1 to neurons. We used microarrays to detail the global change in gene expression of the cerebellum in Niemann-Pick C disease animals, Niemann-Pick C disease animals with Ccl3 gene deletion, and Niemann-Pick C disease animals with Purkinje neuron-specific NPC1-YFP rescue.
Project description:Macrophage inflammatory protein 1alpha/CCL3 protein is a known pro-inflammatory cytokine that can mediate chemotaxis of monocytes and promote cell degranulation. Ccl3 gene expression is elevated in the CNS and visceral tissue of many lysosomal storage disorders. The deletion of Ccl3 in a mouse model of Sandhoff disease was reported to result in reduced monocyte-associated pathology in the brain, delayed neurodegeneration, and prolonged health. However, deletion of Ccl3 in a mouse model of Niemann-Pick C disease was dentrimental or neutral instead of beneficial. Prevention of neuronal loss was instead mediated by providing NPC1 to neurons. We used microarrays to detail the global change in gene expression of the cerebellum in Niemann-Pick C disease animals, Niemann-Pick C disease animals with Ccl3 gene deletion, and Niemann-Pick C disease animals with Purkinje neuron-specific NPC1-YFP rescue. To identify the top ~50 genes elevated in NPC disease Npc1-/- (NPC) and Npc1+/- (WT) mice were compared at age P50; To profile changes in gene expression as a result of Ccl3 gene deletion Ccl3-/-;Npc1-/- mice were compared against Npc1-/- mice across various ages; To profile changes in gene expression as a result of Purkinje neuron-sepcific NPC1 rescue P;N;Npc1-/- mice were compared against Npc1-/- mice across various ages.
Project description:The endocannabinoid system is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick Type C is a neurodegenerative disease in which the role of the endocannabinoid system has not been studied yet. Here, we report the endocannabinoid hydrolase activity in brain proteomes of a Niemann-Pick type C mouse model as measured by activity-based protein profiling. Diacylglycerol lipase α, α/β-hydrolase domain-containing protein 4 (ABHD4), ABHD6, ABHD12, fatty acid amide hydrolase and monoacylglycerol lipase activities were quantified. Chemical proteomics showed no difference in endocannabinoid hydrolase activity in the brain of wildtype compared to Niemann-Pick C1 protein (NPC1) knockout mice. Three lysosomal serine hydrolases were identified with increased activity in NPC1 knockout mouse brain: retinoid-inducible serine carboxypeptidase, cathepsin A and palmitoyl-protein thioesterase 1, and we conclude that these might be interesting therapeutic targets for future validation studies.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.