Project description:We performed snRNA-seq of macaque hippocampal formation sample to investigate whether there is the existence of adult neural stem cells and adult hippocampal neurogenesis.
Project description:Dynamic DNA methylation controls gene-regulatory networks underlying cell fate specification. How DNA methylation patterns change during adult hippocampal neurogenesis and their relevance for the generation of new neurons from adult neural stem cells has, however, remained unknown. Here, we show that neurogenesis-associated de novo DNA methylation is critical for maturation and functional integration of adult-born hippocampal neurons. Cell stage-specific bisulfite sequencing revealed a pronounced gain of DNA methylation at neuronal enhancers, gene bodies and binding sites of pro-neuronal transcription factors during adult neurogenesis, which mostly correlated with transcriptional up-regulation of the associated loci. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells specifically impaired dendritic outgrowth and synaptogenesis of new neurons, resulting in impaired hippocampal excitability and specific deficits in hippocampus-dependent learning and memory. Our results highlight that, during adult neurogenesis, remodeling of neuronal methylomes is fundamental for proper hippocampal function.
Project description:Dynamic DNA methylation controls gene-regulatory networks underlying cell fate specification. How DNA methylation patterns change during adult hippocampal neurogenesis and their relevance for the generation of new neurons from adult neural stem cells has, however, remained unknown. Here, we show that neurogenesis-associated de novo DNA methylation is critical for maturation and functional integration of adult-born hippocampal neurons. Cell stage-specific bisulfite sequencing revealed a pronounced gain of DNA methylation at neuronal enhancers, gene bodies and binding sites of pro-neuronal transcription factors during adult neurogenesis, which mostly correlated with transcriptional up-regulation of the associated loci. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells specifically impaired dendritic outgrowth and synaptogenesis of new neurons, resulting in impaired hippocampal excitability and specific deficits in hippocampus-dependent learning and memory. Our results highlight that, during adult neurogenesis, remodeling of neuronal methylomes is fundamental for proper hippocampal function.
Project description:Dynamic DNA methylation controls gene-regulatory networks underlying cell fate specification. How DNA methylation patterns change during adult hippocampal neurogenesis and their relevance for the generation of new neurons from adult neural stem cells has, however, remained unknown. Here, we show that neurogenesis-associated de novo DNA methylation is critical for maturation and functional integration of adult-born hippocampal neurons. Cell stage-specific bisulfite sequencing revealed a pronounced gain of DNA methylation at neuronal enhancers, gene bodies and binding sites of pro-neuronal transcription factors during adult neurogenesis, which mostly correlated with transcriptional up-regulation of the associated loci. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells specifically impaired dendritic outgrowth and synaptogenesis of new neurons, resulting in impaired hippocampal excitability and specific deficits in hippocampus-dependent learning and memory. Our results highlight that, during adult neurogenesis, remodeling of neuronal methylomes is fundamental for proper hippocampal function.
Project description:During adult hippocampal neurogenesis, the majority of newborn cells undergo apoptosis and are rapidly phagocytosed by resident microglia in order to avoid disturbing the surrounding neurons. Here, we propose that phagocytosis is not merely a passive process of corpse removal but has an active role in maintaining adult hippocampal neurogenesis. First, we found that neurogenesis was disrupted in three defective microglial phagocytosis KO models in vivo (P2Y12, MerTK/Axl , GPR34). We then followed an in vitro approach to perform a transcriptomic analysis of microglial phagocytosis and identified genes involved in metabolism, chromatin remodeling, and neurogenesis-related functions. Finally, we determined that the phagocytic microglia secretome limits the production of new neurons both in vivo and in vitro. Our data suggest that reprogrammed phagocytic microglia acts as a sensor of local cell death, modulating the balance between cell proliferation and cell survival in the neurogenic niche, supporting the long-term maintenance of adult hippocampal neurogenesis.
Project description:Adult Neurogenesis and Gene Expression Changes in 5-HT7 Receptor Knockout Mice: In the adult, the formation of new nerve cells in the CNS is restricted to the subependymal layer and to the subgranular zone of the hippocampus (Duman et al., 2001). Clinically adult neurogenesis has received most attention for its possible role in major depression. Depressed patients have reduced hippocampal neurogenesis (Kasper & McEwen, 2008) and hippocampal volume (Colla et al., 2007). It has also been shown that chronic, but not acute, treatment with currently widely used antidepressants, most notably fluoxetine, results in increased hippocampal neurogenesis (Malberg et al., 2000; Miller et al., 2007). Pharmacologically antidepressants act by elevating the amount of synaptic serotonin (5-HT) and they do that within minutes of administration, but the clinical effect is often delayed, sometimes for weeks (Miller et al., 2007). This delay is believed to involve changes in plasticity and neurogenesis. With currently available treatment options for depression 20% or more of patients do not respond to the therapy. Thus, there is a need for an increased understanding of the mechanism behind plasticity and neurogenesis, and for the development of improved therapies for depression.
Project description:Adult hippocampal neurogenesis is important for certain forms of cognition and failing neurogenesis has been implicated in neuropsychiatric diseases. The neurogenic capacity of hippocampal neural stem/progenitor cells (NSPCs) depends on a balance between quiescent and proliferative states. However, how this balance is regulated remains poorly understood. Here we show that the rate of fatty acid oxidation (FAO) defines quiescence vs. proliferation in NSPCs. Quiescent NSPCs show high levels of carnitine palmitoyltransferase 1a (Cpt1a)-dependent FAO, which is downregulated in proliferating NSPCs. Pharmacological inhibition and conditional deletion of Cpt1a in vitro and in vivo leads to altered NSPC behavior, showing that Cpt1a-dependent FAO is required for stem cell maintenance and proper neurogenesis. Strikingly, experimental manipulation of malonyl-CoA, the metabolite that regulates levels of FAO, is sufficient to induce exit from quiescence and to enhance NSPC proliferation. Thus, the data presented here identify a shift in FAO metabolism that governs NSPC behavior and suggest an instructive role for fatty acid metabolism in regulating NSPC activity.