Project description:ISAV is one of the most dangerous pathogens causing high mortality of farmed Atlantic salmon. In this study, transcriptome responses to the virus were examined in vitro in Atlantic salmon head kidney cells culture (ASK). Poly(I:C), synthetic double-stranded RNA stimulating antiviral responses was used as a positive control.
Project description:Comparison of two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar)
Project description:Atlantic salmon production in Tasmania (Southern Australia) occurs near the upper limits of the species thermal tolerance. Summer water temperatures can average over 19°C over several weeks and have negative effects on performance and health. Liver tissue exerts important metabolic functions in thermal adaptation. With the aim of identifying the mechanisms underlying liver plasticity in response to chronic elevated temperature in Atlantic salmon, label-free quantitative shotgun proteomics was used to explore quantitative protein changes after 43 days of exposure to elevated temperature. A total of 277 proteins were differentially (adjusted p-value <0.05) expressed between the control (15°C) and elevated (21°C) temperature treatments. As predicted identified by Ingenuity pathway analysis (IPA), transcription and translation mechanisms, protein degradation via the proteasome, and cytoskeletal components were down-regulated at elevated temperature. In contrast, an up-regulated response was predicted identified for NRF2-mediated oxidative stress, endoplasmic reticulum stress, and amino acid degradation. The proteome response was paralleled by reduced fish condition factor and hepato-somatic index at elevated temperature . The present study provides further evidence of the interplay among different cellular machineries in a scenario of heat-induced energy deficit and oxidative stress, and refines present understanding of how Atlantic salmon cope with chronic exposure to temperature near the upper limits of thermal tolerance.
2018-03-01 | PXD004985 | Pride
Project description:Genome sequences of Photobacterium colonising Atlantic salmon farmed in Tasmania
Project description:Black soldier fly larvae meal (BSFL) from Hermetia illucens is a promising alternative protein source in diets for farmed fish. The larvae can efficiently convert low-value organic material into high quality protein in a production cycle with low arable land and freshwater inputs. A few recent studies have shown that BSFL is a suitable protein source for Atlantic salmon (Salmo salar) in smaller controlled experiments. However, industry-relevant field trials conducted under large scale near-commercial conditions over a longer period are lacking. In this study, a feeding trial was performed to evaluate the impact of BSFL on growth performance and health of Atlantic salmon during the grow out phase in seawater, in a commercial site in Vestland county, Norway. A total of 320,000 post-smolt Atlantic salmon were distributed into six duplicate sea cages and fed one of three diets (commercial-like control diet and two test diets partially replacing the protein content of the control diet with 4 % and 8 % defatted BSFL meal) for 21 weeks, until a relevant commercial slaughter size of 4.5-5.0 kg was reached. Health parameters were assessed including histology of the distal intestine (DI), in addition to DI microbiota identification (by 16s rRNA-seq) and salmon RNA-seq of DI and head kidney (HK). The results showed that the inclusion of BSFL meal supported growth performance and had no adverse effect on gut health. The beta diversity of the distal intestine microbiota and the relative abundance of families Lactobacillaceae and the chitinolytic Bacillaceae increased in the fish fed the BSFL diets. Additionally, no histopathological changes were attributable to BSFL meal intake. Results from RNA-seq in DI revealed that BSFL inclusion modulates metabolic processes associated with lipids, the response to estrogens, the activity of immune receptors (to chemokines), phagocytosis and extracellular vesicles. Based on these results, black soldier fly larvae meal is a suitable alternative protein ingredient in inclusions of up to at least 8 % for Atlantic salmon under industrial fish farming conditions.
Project description:Unintentional use of mold-infested plant-based feed ingredients are sources of mycotoxins in fish feeds. The presence of the emerging mycotoxins ENNB and BEA in Norwegian commercial fish feeds and plant-based feed ingredients has raised concerns regarding the health effects on farmed Atlantic salmon (Salmon salar). Atlantic salmon pre-smolts were exposed to a non-lethal single-dose of BEA and ENNB, and total RNA sequencing of the intestine and liver was carried out to evaluate gut health and identify possible hepatological changes after a single-dose dietary exposure. ENNB and BEA did not give acute toxicity, however ENNB caused the onset of pathways linked to acute intestinal inflammation and BEA exposures caused the onset of hepatic hematological disruption. The prevalence and concentration of ENNB found in today's commercial feed could affect the fish health if consumed over a longer time-period.
2022-12-01 | GSE213817 | GEO
Project description:Mucosal and digesta microbiota of Atlantic salmon farmed in Tasmania during the winter of 2018