Project description:The aim of this study is to identify the LSD1 target genes in metastatic androgen independent prostate cancer Lysine-specific demethylase 1 (LSD1) was shown to control gene expression and cell proliferation of androgen-dependent prostate cancer (PCa) cells, whereas the role of LSD1 in androgen-independent metastatic prostate cancer remains elusive. Here, we show that depletion of LSD1 leads to increased migration and invasion of androgen-independent PCa cells. Transcriptome and cistrome analyses reveal that LSD1 regulates expression of lysophosphatidic acid receptor 6 (LPAR6) and cytoskeletal genes including the focal adhesion adaptor protein paxillin (PXN). Enhanced LPAR6 signalling upon LSD1 depletion promotes migration with concomitant phosphorylation of PXN. In mice LPAR6 overexpression enhances, whereas knockdown of LPAR6 abolishes metastasis of androgen-independent PCa cells. Taken together, we uncover a novel mechanism of how LSD1 controls metastasis and identify LPAR6 as a promising therapeutic target to treat metastatic prostate cancer.
Project description:The aim of this study is to identify the LSD1 target genes in metastatic androgen independent prostate cancer Lysine-specific demethylase 1 (LSD1) was shown to control gene expression and cell proliferation of androgen-dependent prostate cancer (PCa) cells, whereas the role of LSD1 in androgen-independent metastatic prostate cancer remains elusive. Here, we show that depletion of LSD1 leads to increased migration and invasion of androgen-independent PCa cells. Transcriptome and cistrome analyses reveal that LSD1 regulates expression of lysophosphatidic acid receptor 6 (LPAR6) and cytoskeletal genes including the focal adhesion adaptor protein paxillin (PXN). Enhanced LPAR6 signalling upon LSD1 depletion promotes migration with concomitant phosphorylation of PXN. In mice LPAR6 overexpression enhances, whereas knockdown of LPAR6 abolishes metastasis of androgen-independent PCa cells. Taken together, we uncover a novel mechanism of how LSD1 controls metastasis and identify LPAR6 as a promising therapeutic target to treat metastatic prostate cancer.
Project description:Metastatic prostate cancer (PCa) is a terminal disease and establishment of novel therapeutic strategy specifically targeting metastasis is critically required for its management. This study was aimed at identifying metastasis-driving genes which could potentially be therapeutic targets for metastatic prostate cancer. Integrative analysis of gene expression profiles from a pair of metastatic and non-metastatic prostate cancer tissue xenografts was used to identify potential prostate cancer metastasis-driving genes. Among the candidate genes found, GATA2, a master regulator gene in the development of hematopoietic system, was particularly interesting since it is an important pioneer factor in the regulation of AR-target gene in prostate cancer. In consistent with our finding, elevated expression of the GATA2 gene in metastatic prostate cancers was found and its expression was significantly correlated with poor prognosis in prostate cancer patients. Furthermore, indication of the GATA2 gene maybe the metastasis-driving gene was evidenced in decreased of cell migration, tissue invasion and focal adhesion disassembly in GATA2-down-regulated LNCaP cells. Global gene expression analysis after silencing of the GATA2 gene revealed a significant changed in cell transcriptomes with ~ 2500 genes with > 2 fold mRNA level changed and FDR <0.05, indicates that GATA2 plays a critical role in cell reprogramming as pioneer factor in the development of prostate cancer metastasis. LNCaP human prostate cancer cells transiently knockdown with siRNA that specifically targeting GATA2 (siGATA2) or scrambled siRNA (sicontrol). RNAs were isolated from cells after 72 hours of incubation. Gene expression profiles of four biological replicates from each sample group were analyzed to identify differentially regulated downstream genes after knockdown of GATA2.
Project description:Metastatic prostate cancer (PCa) is a terminal disease and establishment of novel therapeutic strategy specifically targeting metastasis is critically required for its management. This study was aimed at identifying metastasis-driving genes which could potentially be therapeutic targets for metastatic prostate cancer. Integrative analysis of gene expression profiles from a pair of metastatic and non-metastatic prostate cancer tissue xenografts was used to identify potential prostate cancer metastasis-driving genes. Among the candidate genes found, GATA2, a master regulator gene in the development of hematopoietic system, was particularly interesting since it is an important pioneer factor in the regulation of AR-target gene in prostate cancer. In consistent with our finding, elevated expression of the GATA2 gene in metastatic prostate cancers was found and its expression was significantly correlated with poor prognosis in prostate cancer patients. Furthermore, indication of the GATA2 gene maybe the metastasis-driving gene was evidenced in decreased of cell migration, tissue invasion and focal adhesion disassembly in GATA2-down-regulated LNCaP cells. Global gene expression analysis after silencing of the GATA2 gene revealed a significant changed in cell transcriptomes with ~ 2500 genes with > 2 fold mRNA level changed and FDR <0.05, indicates that GATA2 plays a critical role in cell reprogramming as pioneer factor in the development of prostate cancer metastasis.
Project description:Purpose: Despite that androgen-deprivation therapy results in long-lasting responses, the disease inevitably progresses to metastatic castration-resistant prostate cancer. In this study, we identified miR-33b-3p as a suppressor of metastasis in prostate cancer. miR-33b-3p was significantly reduced in prostate cancer tissues, and the low expression of miR-33b-3p was correlated with poor overall survival of prostate cancer patients. Overexpression of miR-33b-3p inhibited both migration and invasion of highly metastatic prostate cancer cells whereas antagonizing miR-33b-3p promoted those processes in lowly metastatic cells. The in vivo results demonstrate that miR-33b-3p suppresses metastasis of tail vein inoculated prostate cancer cells to lung, liver, and lymph node in mice. DOCK4 was validated as the direct target of miR-33b-3p. miR-33b-3p decreased the expression of DOCK4 and restoration of DOCK4 could rescue miR-33b-3p inhibition on cell migration and invasion. Moreover, downregulation of miR-33b-3p was induced by bortezomib, the clinically used proteasome inhibitor, and overexpression of miR-33b-3p rescued the insufficient inhibition of bortezomib on migration and invasion in prostate cancer cells. Collectively, our findings demonstrate that miR-33b-3p suppresses metastasis by targeting DOCK4 in prostate cancer. Our results suggest that enhancing miR-33b-3p expression may provide a promising therapeutic strategy for overcoming that proteasome inhibitor’s poor efficacy against metastatic prostate cancer.
Project description:RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing shRNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases.RNA-sequencing and Ingenuity Pathway Analysis identified wound healing and cellular movement among the most significant pathways upregulated in RNF185-depleted, compared to control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in EMT. Among those, COL3A1 was identified as the primary mediator of RNF185’s ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 KD prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability.
Project description:To identify genes with the potential target of differentially expressed miRNA in metastatic prostate cancer, we have employed whole genome microarray expression profiling. Transplantable metastatic versus a non-metastatic prostate cancer xenograft line, both derived from one patient’s primary cancer, were developed via sub-renal capsule grafting of cancer tissue into NOD/SCID mice. The same RNA samples from both lines were also used for miRNA sequencing. Overlapped genes of predicted targets of differentially expressed miRNAs and differentially expressed in microarray platform showed potential markers of combination of miRNA and gene in metastatic prostate cancer. Gene expression in metastatic/non-metastatic prostate cancer was measured. Same total RNA samples were used for small RNA library construction for miRNA sequencing. This submission represents the gene expression component of the study.
Project description:To identify genes with the potential target of differentially expressed miRNA in metastatic prostate cancer, we have employed whole genome microarray expression profiling. Transplantable metastatic versus a non-metastatic prostate cancer xenograft line, both derived from one patient’s primary cancer, were developed via sub-renal capsule grafting of cancer tissue into NOD/SCID mice. The same RNA samples from both lines were also used for miRNA sequencing. Overlapped genes of predicted targets of differentially expressed miRNAs and differentially expressed in microarray platform showed potential markers of combination of miRNA and gene in metastatic prostate cancer.
Project description:Purpose: Prostate cancer is the most frequently diagnosed cancer in men and the third leading cause of cancer related deaths among men living in developed countries. Biomarkers that predict disease outcome at the time of initial diagnosis would aid management of the disease. Experimental design: Proteins extracted from formalin-fixed paraffin-embeddded sections were identified either using LC-MALDI MS/MS of tryptic digests or after separation by one- or two-dimensional electrophoresis. A list of potential biomarker candidates, based on proposed associations with prostate cancer, was derived from the 320 identified proteins. Results: Four of the candidates: annexin A2, peroxiredoxin-1, prostate-specific antigen and zinc-alpha-2-glycoprotein, were examined by Western blotting of extracts of biopsies from men whom there was 10-year disease outcome data. Multiplexed Western blotting using cocktails of antibodies and fluor-labeled detection reagents showed that annexin A2 provided the best prediction of risk of metastatic disease. Conclusions and clinical relevance: This pilot study indicates that tumour expression of ANXA2 in diagnostic biopsies of a prostate cancer is predictive for the metastatic potential of that cancer. The potential of protein profiling of each cancer is to lead to an overall reduction in mortality from metastatic prostate cancer as well as reduced treatment associated morbidity.