Project description:Schizosaccharomyces pombe Rad3 checkpoint kinase and its human ortholog ATR are essential for maintaining genome integrity in cells treated with genotoxins that damage DNA or arrest replication forks. Rad3 and ATR also function during unperturbed growth, although the events triggering their activation and their critical functions are largely unknown. Here, we use ChIP-on-chip analysis to map genomic loci decorated by phosphorylated histone H2A (gH2A), a Rad3 substrate that establishes a chromatin-based recruitment platform for DNA repair/checkpoint proteins. Our data showed that gH2A marks a diverse array of genomic features during S-phase, including natural replication fork barriers and a fork breakage site, retrotransposons, heterochromatin in the centromeres and telomeres, and ribosomal RNA (rDNA) repeats. The enrichment of gH2A at these sites was confirmed by multiple ChiP-qPCR experiments.
Project description:The metazoan nuclear periphery is involved in transcriptional regulation and chromatin organisation. To test whether this is also the case in the fission yeast Schizosaccharomyces pombe, we performed DamID experiments with two inner nuclear membrane (INM) proteins, Ima1 and Man1. The resulting map showed that about a third of the genome is associated with the nuclear periphery. We find that both INM proteins preferentially associate with lowly expressed genes, and are depleted from highly expressed genes. Further, intergenic regions of divergent gene pairs are more frequently associated with the periphery than convergent pairs, indicating that transcription points away from the periphery rather than toward it
Project description:The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Unexpectedly, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD domain. We functionally demonstrate how retrotransposon encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima. Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG-densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding potentially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome disproportionately accumulate in methylated gene bodies when compared to other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data demonstrate that retrotransposons can co-opt host-derived epigenome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.