Project description:Nitrogen and arsenic contaminants often coexist in groundwater, and microbes show the potential for simultaneous removal of nitrogen and arsenic. Here, we reported that Hydrogenophaga sp. H7 was heterotrophic nitrification and aerobic denitrification (HNAD) and arsenite [As(III)] oxidation bacterium. Strain H7 presented efficient capacities for simultaneous NH4+-N, NO3--N, or NO2--N removal with As(III) oxidation during aerobic cultivation. Strikingly, the bacterial ability to remove nitrogen and oxidize As(III) has remained high across a wide range of temperatures, pH values, and shaking speeds, exceeding that of the most commonly reported HNAD bacteria. Additionally, the previous HNAD strains exhibited a high denitrification efficiency, but a suboptimal concentration of nitrogen remained in the wastewater. Here, strain H7 combined with FeCl3 efficiently removed 96.14% of NH4+-N, 99.08% of NO3--N, and 94.68% of total nitrogen (TN), and it oxidized 100% of As(III), even at a low nitrogen concentration (35 mg/L). The residues in the wastewater still met the Surface Water Environmental Quality Standard of China after five continuous wastewater treatment cycles. Furthermore, genome and proteomic analyses led us to propose that the shortcut nitrification-denitrification pathway and As(III) oxidase AioBA are the key pathways that participate in simultaneous nitrogen removal and As(III) oxidation.
Project description:Roothans et al., analyzed heterotrophic denitrification processes that can be an important source of nitrous oxide. We employed planktonic nitrification-inhibited denitrifying enrichment cultures under alternating oxic-anoxic conditions. The dynamic conditions resulted in a general presence of the denitrifying enzymes. Overall, we show that aerobic denitrification should not be neglected as an ecologically relevant process. Contact author: m.laureni@tudelft.nl
2024-07-17 | PXD042057 | Pride
Project description:Heterotrophic nitrification-aerobic denitrification (HNAD) in the treatment of marine aquaculture wastewater: nitrogen removal performance, mechanism and microbial characteristics
Project description:Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to boost biomass growth in all wastewater samples. In anaerobic conditions, the indigenous microbial community bio-augmented with B. subtilis was able to rapidly remove nitrate from wastewater. In these conditions, B. subtilis overexpressed nitrogen assimilatory and respiratory genes including NasD, NasE, NarG, NarH, and NarI, which arguably accounted for the observed boost in denitrification. Next, we attempted to use the the ammonium- and nitrate-enriched wastewater samples bio-augmented with B. subtilis in the cathodic compartment of bioelectrochemical systems (BES) operated in anaerobic condition. B. subtilis only had low relative abundance in the microbial community, but bio-augmentation promoted the growth of Clostridium butyricum and C. beijerinckii, which became the dominant species. Both bio-augmentation with B. subtilis and electrical current from the cathode in the BES promoted butyrate production during fermentation of glucose. A concentration of 3.4 g/L butyrate was reached with a combination of cathodic current and bio-augmentation in ammonium-enriched wastewater. With nitrate-enriched wastewater, the BES effectively removed nitrate reaching 3.2 mg/L after 48 h. In addition, 3.9 g/L butyrate was produced. We propose that bio-augmentation of wastewater with B. subtilis in combination with bioelectrochemical processes could both boost denitrification in nitrate-containing wastewater and enable commercial production of butyrate from carbohydrate- containing wastewater, e.g. dairy industry discharges. These results suggest that B. subtilis bio-augmentation in our BES promotes simultaneous wastewater treatment and butyrate production.
2020-05-15 | GSE150480 | GEO
Project description:Study on the retention characteristics of heterotrophic nitrification-aerobic denitrification bacteria by different fillers in the bio-doubling reactor
Project description:The global sanitary crisis derived from antibiotic multi-resistant bacteria entails the need to reduce sulfamethoxazole (SMX) concentrations in wastewater treatment plants (WWTPs). The key microorganisms and the biotransformation mechanisms leading to SMX removal remain incompletely characterized, particularly under aerobic heterotrophic conditions, which are becoming increasingly relevant in the design of novel, more energy-efficient, WWTPs. In this study, sequential batch reactors were inoculated with activated sludge, operated in heterotrophic conditions and spiked with six different initial SMX concentrations ranging between 0 and 2000 µg L-1. The goal was to determine the influence of SMX in the microbiome and its enzymatic expression through genomic, metaproteomic and transformation product analyses. The results allowed us to identify the metabolite 2,4(1H,3H)-pteridinedione-SMX (PtO-SMX), pointing to the role of the pterin-conjugation pathway in the biotransformation of SMX. Additionally, at increased SMX concentrations, through metaproteomics and 16S rRNA gene sequencing, it was determined a higher abundance of the genus Corynebacterium and a differential expression of five enzymes involved in its central metabolism, suggesting the relevant role of this bacteria to mitigate SMX risks.
2022-09-20 | PXD029711 | Pride
Project description:Multi-metabolism pathways insights into nutrients removal performance with adding heterotrophic nitrification-aerobic denitrification bacteria in tidal flow constructed wetlands
| PRJNA693098 | ENA
Project description:Synergistic effects of disinfectants chloroxylenol and benzethonium chloride on efficient heterotrophic nitrification-aerobic denitrification functional strain.
| PRJNA1048104 | ENA
Project description:Isolation of salt tolerant denitrifying bacteria and their application in biological denitrification of high salt wastewater
| PRJNA1180705 | ENA
Project description:Nitrogen removal pathways and denitrification products of the cold-tolerant heterotrophic nitrification and aerobic denitrification bacterium Pseudomonas fragi EH-H1