Project description:We are investigating the transcriptional response of yeast to modulation of the expression of base excision repair players, these generate different dna lesions of abasic sites of strand breaks; We used microarrays to detail the global programme of gene expression underlying the DNA damage response in yeast Experiment Overall Design: Yeaststrains with different expression levels of players in base excision repair (in biological triplicate) were grown to mid log phase. The expression responses were compared to each other and we have deciphered a gene expression profile that is specific for DNA damage in yeast.
Project description:We are investigating the transcriptional response of yeast to modulation of the expression of base excision repair players, these generate different dna lesions of abasic sites of strand breaks We used microarrays to detail the global programme of gene expression underlying the DNA damage response in yeast Keywords: dose
Project description:We have adapted the eXcision Repair-sequencing (XR-seq) method to generate single-nucleotide resolution dynamic repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs] in the Saccharomyces cerevisiae genome. We find that these photoproducts are removed from the genome primarily by incisions 13-18 nucleotides 5’ and 6-7 nucleotides 3’ to the UV damage that generate 21-27 nt-long excision products. Analyses of the excision repair kinetics both in single genes and at the genome-wide level reveal strong transcription-coupled repair of the transcribed strand (TS) at early time points followed by predominantly non-transcribed strand (NTS) repair at later stages. We have also characterized the excision repair level as a function of transcription level. The availability of high-resolution and dynamic repair maps should aid in future repair and mutagenesis studies in this model organism.
Project description:DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape is unknown. Here we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome free regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad and is regulated by histone modifications. Our data also indicate that MMS-induced A mutations are significantly enriched on the non-transcribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale, and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers.
Project description:Yeast replicative aging is a process resembling replicative aging in mammalian cells. During aging, wild type haploid yeast cells enlarge, become sterile, and undergo nucleolar enlargement and fragmentation; we sought gene expression changes during the time of these phenotypic changes. Gene expression studied via microarrays and qPCR has shown reproducible, statistically significant changes in mRNA of genes at 12 and 18-20 generations. Our findings support previously described changes towards aerobic metabolism, decreased ribosome gene expression, and a partial Environmental Stress Response. Our novel findings include a pseudo-stationary phase, down-regulation of methylation-related metabolism, increased Nucleotide Excision Repair related mRNA, and a strong up-regulation of many of the regulatory subunits of protein phosphatase I (Glc7). These findings are correlated with aging changes in higher organisms as well as with the known involvement of protein phosphorylation states during yeast aging. J Gerontol, Jan, 2008, vol 63A, no. 1. Keywords: aging time course
Project description:DNA base damage arises frequently in all living cells and is an important contributor to mutations and genome instability. The main repair pathway for base damage is base excision repair (BER). How the formation and repair of base lesions are modulated by DNA-binding proteins is poorly understood. Here we used a high-throughput damage mapping method, N-methylpurine-sequencing (NMP-seq), to characterize alkylation damage distribution and BER at yeast transcription factor (TF) binding sites upon the treatment with alkylating agent methyl methanesulfonate (MMS). We found that formation of alkylation damage was mainly suppressed at the binding sites of yeat TFs Abf1 and Reb1, but individual hotspots with elevated damage formation were also observed. Furthermore, our data indicates that repair of alkyhlation damage by BER was significantly inhibited both within the TF core motif and its adajcent DNA. The modulation of damage formation and BER was caused by the TF binding, because lesion formation and repair can be restored by depletion of Abf1 or Reb1 from the nucleus. Finally, we show that repair of UV damage by nucleotide excision repair (NER) was also inhibited at the binding sites of Abf1 and Reb1. A comparision between alkylyation and UV damage repair reveals that NER was inhibited in a broader DNA region relative to BER. Thus, our analyses indicate that TF binding significantly modulates alkylation damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.
Project description:In the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3’-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability.
Project description:In the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3â-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability. S. cerevisiae strains were grown in YPAD liquid culture at 30°C, total RNA was isolated and hybridized on Affymetrix microarrays.