Project description:To see the function of CERK1 receptor-like kinase in the chitin elicitor signaling in Arabidopsis, we compared the gene expression profiles in the chitin oligosaccharide treated seedlings of wild type A. thaliana and CERK1 knock-out mutant. Keywords: Defense response
Project description:To see the function of OsCERK1 receptor-like kinase in the chitin elicitor signaling in Rice, we compared the gene expression profiles in the chitin oligosaccharide treated cultured rice cells of vector control and OsCERK1 knock-down mutant (RNAi). Keywords: Defense response 1,Chitin oligosaccharide treatment (vector control), 2,Chitin oligosaccharide treatment (vector control) color swap, 3,Chitin oligosaccharide treatment (OsCERK1 RNAi), 4,Chitin oligosaccharide treatment (OsCERK1 RNAi) color swap
Project description:To see the function of OsCERK1 receptor-like kinase in the chitin elicitor signaling in Rice, we compared the gene expression profiles in the chitin oligosaccharide treated cultured rice cells of vector control and OsCERK1 knock-down mutant (RNAi). Keywords: Defense response
Project description:Perception of microbe-associated molecular patterns by host cell-surface pattern recognition receptors triggers a series of immune responses such as activation of mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, the receptor-like cytoplasmic kinase PBL27 interacts with the chitin receptor CERK1 and regulates chitin-induced MAPK activation. We found that the MAPK kinase kinase MAPKKK5 connects PBL27 to the downstream MAPK Kinases (MKK4/5) and MAPKs (MPK3/6). RNA-seq analysis using the mapkkk5 mutant indicated that MAPKKK5 plays important roles in chitin-induced transcriptional reprogramming. As far as we are aware, this is the first report pointing to the significance of a complete MAPK cascade in defense-associated transcriptional reprogramming in plants.
Project description:Using the ATH1 Affymetrix microarrays consisting of about 23,000 genes, we examined the response of Arabidopsis seedlings to chito-tetramers, chito-octamers and hydrolyzed chitin after 30 min of treatment. Keywords = chitin Keywords = defense Keywords = elicitor Keywords = mutant Keywords = powdery mildew Keywords = Erysiphe cichoracearum Keywords: ordered
Project description:A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis Jinrong Wan,1 Xuecheng Zhang,1 David Neece,2 Katrina M. Ramonell,3 Steve Clough,2,4 Sung-yong Kim,1 Minviluz Stacey,1 and Gary Stacey1* 1Division of Plant Sciences, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA 2Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA 4US Department of Agriculture, Soybean/Maize Germplasm, Pathology and Genetics Research, Urbana, IL 61801, USA *To whom correspondence should be addressed. E-mail: staceyg@missouri.edu Abstract: Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger various defense responses. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chitooligosaccharides in Arabidopsis. Mutation of this gene blocked the induction of almost all chitooligosaccharide-responsive genes (CRGs) and led to more susceptibility to fungal pathogens, but not to a bacterial pathogen. In addition, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants, but not in the mutant. Together, our data strongly suggest AtLysM RLK1 is the chitin receptor or a key part of the receptor complex and chitin is a PAMP (pathogen-associated molecular pattern) in fungi recognized by the receptor leading to the induction of plant innate immunity against fungal pathogens. Since LysM RLKs were also recently shown to be critical for the perception of the rhizobial lipo-chitin Nod signals, our data suggest that LysM RLKs not just recognize friendly symbiotic rhizobia (via their lipo-chitin Nod signals), but also hostile fungal pathogens (via their cell wall chitin). These data suggest a possible evolutionary relationship between the perception mechanisms of Nod signals and chitin by plants. Keywords: chitooctaose, chitin receptor mutant