Project description:MicroRNAs (miRNAs) are single strand small non-coding RNAs that regulate target mRNAs at post-transcription level. Winter wheat (Triticum aestivum L.), is an important crop plant all over the world. Long term cold exposure (vernalization) is necessary for winter wheat transition from vegetative growth to reproductive growth, yet the involvement of miRNAs in these stages remains unknown. Therefore, we performed next generation sequencing of small RNAs profiles in crown tissues at three-leaf stage, winter dormancy stage, spring greenup stage and jointing stage.
Project description:In this study, we used transcriptomic and hormonomic approaches to examine drought-induced changes in barley roots and leaves and its rhizosphere. By studying hormonal responses, alternative splicing events in barley, and changes in the rhizosphere microbiome, we aimed to provide a comprehensive view of barley drought-adaptive mechanisms and potential plant-microbe interactions under drought stress. This approach improved our understanding of barley adaptive strategies and highlighted the importance of considering plant-microbe interactions in the context of climate change.
Project description:To explore transcriptional regulations in common wheat cultivars Norstar (NO), Manitou (MA), and the near-isogenic lines (NIL) spring Norstar (SN) and winter Manitou (WM) during seasonal cold acclimation.
Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:We utilized the Barley1 Affymetrix GeneChip for comparative transcript analysis of Betzes barley, Chinese Spring wheat, and Chinese Spring–Betzes ditelosomic chromosome addition lines to physically map barley genes to their respective chromosome arm locations. We mapped barley genes to chromosome arms (1HS, 2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 5HS, 5HL, 7HS, and 7HL) based on their transcript levels in the ditelosomic addition lines. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Hatice Bilgic. The equivalent experiment is BB55 at PLEXdb.]
Project description:The effect of light during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese) and spring wheat variety Nadro. Ten-day-old plants were cold hardened at 5°C for 12 days either under normal (250 mmol m-2 s-1) or low light (20 mmol m-2 s-1) conditions.
Project description:Different wheat cultivars may be classified as either winter or spring varieties depending on whether they require exposure to an extended period of cold in order to become competent to flower. Using a growth regime that mimics the conditions that occur during a typical winter in Britain, we wished to survey the genes that are involved in phase transition as well as those involved in cold-acclimation. Keywords: Time course
Project description:The analysis of gene expression during wheat development: Gene expression measurements were carried out on a developmental tissue series for wild-type wheat (cv. Chinese Spring) using the Affymetrix Wheat GeneChip. Thirteen tissues at defined developmental stages were chosen to match the barley (cv. Morex) tissue series of Druka et al. 2006 that used the Affymetrix Barley1 GeneChip. Three replicates of: root tissue at two different developmental stages, leaf, crown, caryopsis, anther, pistil, inflorescence, bracts, mesocotyl, endosperm, embryo and coleoptiles were hybridised. Comparisons between this wheat data and the barley dataset were performed and are available at http://contigcomp.acpfg.com.au [PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Tim Sutton. The equivalent experiment is TA3 at PLEXdb.]