Project description:We aim to study the unusual TMA metabolism mechanism of ducks, and further explore the hidden reasons that led to the weakening TMA metabolism ability. To achieve this, transcriptome, proteome, and metagenome analyses were integrated based on the constructed duck populations with high TMA metabolism ability and low TMA metabolism ability. In addition, further experiments were followed to validate the hypothesis on the limited flavin-containing monooxygenase 3 (FMO3) metabolism ability of ducks. The study demonstrated that both cecal microbe, including Akkermansia and Mucispirillum, and liver FMO3 participated in the TMA metabolism process of ducks. The limited oxidation ability of FMO3 explained the weakening TMA metabolism ability of ducks. Nevertheless, it contributed to the duck’s survival and reproduction during the evolutional adaption process.
Project description:We characterized the liver proteome of six Pekin ducks from pantothenic acid-deficient (PAD) group and the pantothenic acid-adequate (control, CON) group.
Project description:We characterized the intestinal mucosal proteome of six Pekin ducks from pantothenic acid-deficient (PAD) group and the pantothenic acid-adequate (control, CON) group.
Project description:We aim to study the unusual TMA metabolism mechanism of ducks, and further explore the hidden reasons that led to the weakening TMA metabolism ability.To achieve this, transcriptome, proteome, and metagenome analyses were integrated based on the constructed duck populations with high TMA metabolism ability and low TMA metabolism ability.
Project description:The novel duck reovirus (NDRV) can cause hemorrhage and necrosis on the spleen of Pekin ducks, this disease has resulted in great economic losses to the duck industry. However, the molecular pathogenesis of NDRV remains poorly understood. In the current study, the quantitative proteomic analysis of NDRV-infected duck embryo fibroblasts was performed to explore the cellular protein changes in response to viral infection through iTRAQ coupled with the LC–MS/MS method. A total of 6,137 proteins were obtained in cell samples at 24 hours post infection. Of these, 179 differentially expressed proteins (DEPs) were identified (cutoff set to 1.5-fold change), including 89 upregulated and 90 downregulated proteins. Bioinformatic analysis showed that DEPs can be divided into the cellular component, molecular function, and biological process, they were mainly involved in the signal transduction, infectious diseases, cell growth and death, and the immune system. The subcellular localization of most proteins was cytoplasm. Importantly, the expression of signal transducer and activator of transcription 1 (STAT1) and various interferon-stimulated genes (ISGs) were upregulated after NDRV infection. The mRNA transcripts of some ISGs were consistent with proteomic data, showing an increased trend. Results of our study suggested that NDRV infection can elicit the strong expression changes of cellular proteins, and activate the expression of ISGs from the point of quantitative proteomic analysis. The study provides a new insight into the understanding of NDRV pathogenesis.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison Frontonasal mesenchymal cells were micro-dissected two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. For each sample, mesenchyme from 40 embryos was pooled. For each stage-matched comparison between duck and chicken, experiments include technical replicates as well as dye-switches for a total of 14 microarrays.