Project description:Background/Aims: Microarray-based comparative genomic hybridisation (CGH) has allowed high-resolution analysis of DNA copy number alterations across the entire cancer genome. Recent advances in bioinformatics tools enable us to perform a robust and highly sensitive analysis of array CGH data and facilitate the discovery of novel cancer-related genes. Methods: We analysed a total of 29 pancreatic ductal adenocarcinoma (PDAC) samples (six cell lines and 23 microdissected tissue specimens) using 1 Mb-spaced CGH arrays. The transcript levels of all genes within the identified regions of genetic alterations were then screened using our Pancreatic Expression Database. Results: In addition to 238 high-level amplifications and 35 homozygous deletions, we identified 315 minimal common regions of “non-random” genetic alterations (115 gains and 200 losses) which were consistently observed across our tumour samples. The small size of these aberrations (median size of 880 kb) contributed to the reduced number of candidate genes included (on average 12 Ensembl-annotated genes). The database has further specified the genes whose expression levels are consistent with their copy number status. Such genes were UQCRB, SQLE, DDEF1, SLA, ERICH1 and DLC1, indicating that these may be potential target candidates within regions of aberrations. Conclusion: This study has revealed multiple novel regions that may indicate the locations of oncogenes or tumour suppressor genes in PDAC. Using the database, we provide a list of novel target genes whose altered DNA copy numbers could lead to significant changes in transcript levels in PDAC. (Harada et al. Pancreatology) Keywords: pancreatic ductal adenocarcinima, tissue microdissection, array CGH, genetic alterations A panel of 23 microdissected PDAC tissues and 6 PDAC-derived cell lines were analysed using Sanger's CGH arrays with 1 Mb resolution. Clinical info of the samples used is provided as a supplementary file.
Project description:Background/Aims: Microarray-based comparative genomic hybridisation (CGH) has allowed high-resolution analysis of DNA copy number alterations across the entire cancer genome. Recent advances in bioinformatics tools enable us to perform a robust and highly sensitive analysis of array CGH data and facilitate the discovery of novel cancer-related genes. Methods: We analysed a total of 29 pancreatic ductal adenocarcinoma (PDAC) samples (six cell lines and 23 microdissected tissue specimens) using 1 Mb-spaced CGH arrays. The transcript levels of all genes within the identified regions of genetic alterations were then screened using our Pancreatic Expression Database. Results: In addition to 238 high-level amplifications and 35 homozygous deletions, we identified 315 minimal common regions of “non-random” genetic alterations (115 gains and 200 losses) which were consistently observed across our tumour samples. The small size of these aberrations (median size of 880 kb) contributed to the reduced number of candidate genes included (on average 12 Ensembl-annotated genes). The database has further specified the genes whose expression levels are consistent with their copy number status. Such genes were UQCRB, SQLE, DDEF1, SLA, ERICH1 and DLC1, indicating that these may be potential target candidates within regions of aberrations. Conclusion: This study has revealed multiple novel regions that may indicate the locations of oncogenes or tumour suppressor genes in PDAC. Using the database, we provide a list of novel target genes whose altered DNA copy numbers could lead to significant changes in transcript levels in PDAC. (Harada et al. Pancreatology) Keywords: pancreatic ductal adenocarcinima, tissue microdissection, array CGH, genetic alterations
Project description:To further development of our lncRNA and mRNA expression approach to pancreatic ductal adenocarcinoma(PDAC), we have employed lncRNA and mRNA microarray expression profiling as a discovery platform to identify lncRNA and mRNA expression in pancreatic ductal adenocarcinoma.Human pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from PDAC donors and other duodenum diseases donors. analyze mRNA and lncRNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform
Project description:To explore the potential involvement of circular RNAs (circRNAs) in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted circRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of circRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology. Analyze circular RNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform.
Project description:Genome wide DNA methylation profiling of pancreatic ductal adenocarcinoma (PDAC) and non-tumoral pancreatic samples (PT). The Illumina Infinium450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles in tissue samples. Samples included 6 PDAC and 9 PT.
Project description:To evaluate the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC), we performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 control samples.
Project description:Array Comparative Genomic Hybridization (aCGH) of 70 pancreatic ductal adenocarcinoma (PDAC) samples was performed on Agilent 244K CGH arrays in order to find common genomic aberrations for cancer gene discovery. Additionally, matched expression profiling on Agilent 44K arrays was performed. Common copy number aberrations were identified in order to identify a list of putative cancer genes. Expression profiling data was used to further enrich this list of putative cancer genes for more likely candidates. Last, the most promising candidates were functionally interrogated using RNA interference-mediated knockdown to mimic loss. Well-known PDAC cancer genes were observed as amplified (KRAS and MYC) and deleted (CDKN2A, TGFBR2, SMAD4, and MAP2K4).
Project description:Analysis of expression profile of peripheral blood from pancreatic ductal adenocarcinoma patients RNA expression profile of peripheral blood from pancreatic ductal adenocarcinoma patients Total RNA was isolated from peripheral blood. 36 patients with unresectable PDAC were recruited. The diagnosis of PDAC was based on clinical evaluation and imaging studies, which were histologically confirmed by surgery or imaging-guided biopsy. 14 gender, age, and habits matched healthy controls were also included. A total of 1000 ng of total RNA was processed using Illumina TotalPrep RNA Amplification Kit. Hybridization of human samples was performed on Illumina Human-HT12 Version 4.
Project description:Gemcitabine has been a first-line therapeutic agent for pancreatic ductal adenocarcinoma (PDAC) pancreatic cancer; however, acquisition of resistance to gemcitabine remains a major challenge. We analyzed miRNAs expression profiles by array-based miRNAs analysis between gemcitabine–resistant (PANC-1/GEM) and parental PANC-1 cells.
Project description:To further development of our lncRNA and mRNA expression approach to pancreatic ductal adenocarcinoma(PDAC), we have employed lncRNA and mRNA microarray expression profiling as a discovery platform to identify lncRNA and mRNA expression in pancreatic ductal adenocarcinoma.Human pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from PDAC donors and other duodenum diseases donors.