Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Transfer of PAT-perturbed microbiota led to delayed sIgA expression indicating that the altered microbiota is sufficient to transfer PAT-induced effects. PAT exposure had lasting and transferable effects on microbial community network structure. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Transfer of PAT-perturbed microbiota led to delayed sIgA expression indicating that the altered microbiota is sufficient to transfer PAT-induced effects. PAT exposure had lasting and transferable effects on microbial community network structure. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:The human intestinal microbiota plays an essential role in host health. Modifications in its composition and diversity could induce pathologies such as inflammatory bowel diseases (IBD). These diseases are characterized by an unbalanced intestinal microbiota (a process known as dysbiosis) and an altered immune response. Faecalibacterium prausnitzii, the most abundant commensal bacterium in the human intestinal microbiota of healthy individuals (representing more than 5% of the total bacterial population), has been reported to be lower in feces and mucosa-associated microbiota of IBD patients. In addition, we have shown that both F. prausnitzii and its culture supernatant (SN) have anti-inflammatory and protective effects in both acute and chronic colitis models. However, the host molecular mechanisms involved in these anti-inflammatory effects remain unknown. In order to address this issue, we performed DNA chip-based transcriptomic analyses in HT-29 human intestinal epithelial cells stimulated with TNF-a and exposed to F. prausnitzii SN or to BHI (growth medium for F prausnitzii).
Project description:We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin organization. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is pre-programmed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs. mRNA and accessible chromatin (DNase-seq) profiles from colonic and ileal IECs were compared between conventionally-raised (CR), germ-free (GF), and conventionalized (CV) C57BL/6 mice.
Project description:Tris(2-chloroethyl) phosphate (TCEP) is a pervasive flame retardant that has been identified as a chemical of concern given its health effects and therefore its use has since been tightly regulated. Tris(2-chloroisopropyl) phosphate (TCIPP), an analogue of TCEP, is believed to be its replacement. However, compared to TCEP, little is known of the toxicological impacts of TCIPP. We used RNA sequencing as unbiased and sensitive tool to identify and compare effects on a transcriptome level of TCEP and TCIPP in the human hepatocellular carcinoma cell line, HepG2. We identified that compared to other flame retardants, TCEP and TCIPP had little cytotoxicity. Treatment with sub-cytotoxic concentrations of the two compounds revealed that both chemicals elicited similar effects; both compounds were found to affect genes involved in immune responses and steroid hormone biosynthesis, while also affecting xenobiotic metabolism pathways in a similar manner. Specifically for effects on immune responses, both compounds were shown to alter the expression of the receptor of the potent and pleiotropic complement component, C5a. Additionally, expression of genes encoding for effector proteins involved in the complement cascade along with other potent inflammatory regulators were found altered in response to TCEP and TCIPP, further emphasizing their potential effects on immune function. Taken together, given that TCIPP elicited similar effects compared to TCEP, and at lower concentrations, the potential health effects of TCIPP need to be further studied for a complete risk assessment of the compound.