Project description:This SuperSeries is composed of the following subset Series: GSE4063: Gene expression in skeletal muscle in AMPK gamma3 knock-out mice and wild type littermates GSE4065: Gene expression in skeletal muscle in AMPK gamma3 mutant (R225Q) transgenic mice and wild type littermates. Note: GSE4063 and GSE4065 are not directly comparable. Keywords: SuperSeries Refer to individual Series
Project description:Analysis of AMPK gamma3-dependent transcriptional responses by analyzing global gene expression in the white portion of the gastrocnemius muscle in AMPK gamma3 mutant (R225Q) transgenic mice and corresponding wild type littermates. Keywords: Genetic modification
Project description:Analysis of AMPK gamma3-dependent transcriptional responses by analyzing global gene expression in the white portion of the gastrocnemius muscle in AMPK gamma3 mutant (R225Q) transgenic mice and corresponding wild type littermates.
Project description:Analysis of AMPK gamma3-dependent transcriptional responses by analyzing global gene expression in the white portion of the gastrocnemius muscle in AMPK gamma3 knock-out mice and corresponding wild type littermates. Keywords: Genetic modification
Project description:Analysis of AMPK gamma3-dependent transcriptional responses by analyzing global gene expression in the white portion of the gastrocnemius muscle in AMPK gamma3 knock-out mice and corresponding wild type littermates.
Project description:This experiment was conducted to identify target genes of the microRNA-499 in skeletal muscle of transgenic mice that overexpressed miR-499. The following abstract from the submitted manuscript describes the major findings of this work. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. Jing Liu, Xijun Liang, Danxia Zhou, Ling Lai, Tingting Fu, Yan Kong, Qian Zhou, Rick B. Vega, Min-Sheng Zhu, Daniel P. Kelly, Xiang Gao, and Zhenji Gan. Upon adaption of skeletal muscle to physiological and pathophysiological stimuli, muscle fiber type and mitochondrial function are coordinately regulated. Recent studies have identified pathways involved in control of contractile proteins of oxidative type fibers. However, the mechanism for coupling of mitochondrial function to muscle contractile machinery during fiber type transition remains unknown. Here, we show that the expression of the genes encoding type I myosins, Myh7/Myh7b and their intronic miR-208b/miR-499 parallels mitochondrial function during fiber type transitions. Using in vivo approaches in mice, we found that miR-499 drives a PGC-1a-dependent mitochondrial oxidative metabolism program to match shifts in slow-twitch muscle fiber composition. Mechanistically, miR-499 directly targets Fnip1, a known AMP-activated protein kinase (AMPK)-interacting protein that negatively regulates AMPK, a known activator of PGC-1a. Inhibition of Fnip1 reactivated AMPK/PGC-1a signaling and mitochondrial function in myocytes. Restoration of the expression of miR-499 in the mdx mouse model of Duchenne muscular dystrophy (DMD) reduced the severity of DMD. Thus, we have identified a miR-499/Fnip1/AMPK circuit that can serve as a mechanism to couple muscle fiber type and mitochondrial function. Keywords: muscle, contractile fiber type, mitochondrial function, microRNA, gene regulation RNA from three wild-type (non-transgenic (NTG)) and three miR-499 overexpressing (MCK-miR-499) mice was analyzed. three replicates of each are provided.
Project description:We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to the extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. Loss of Mustn1 in vascular smooth muscle cells does not affect their proliferative or migratory functions. We show that Mustn1 can be secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle interstitial fluid, in particular during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates.