Project description:Clean room microbial communities from NASA Spacecraft Assembly Facility at Jet Propulsion Laboratory, Pasadena, California, USA - Phoenix Before-Phoenix assembly at KSC-PHSF metagenome
| PRJNA464643 | ENA
Project description:JPL Spacecraft Assembly Facility Spore to VO
Project description:We report RNA sequencing data for mRNA transcripts obtained from tobramycin exposed phoenix colonies, VBNCs, and various controls (untreated lawn, edge of the zone of clearance of tobramycin, treated outer background lawn). Extracted mRNA was sequenced using an Illumina HiSeq 4000, mapped to a Pseudomonas aeruginosa PAO1 reference genome, and processed to obtain counts for all gene transcripts for each sample. This is the first sequencing data generated for Pseudomonas aeruginosa phoenix colonies and VBNCs.
Project description:Genomic and proteomic characterization of the Aspergillus niger isolate, JSC-093350089, collected from U.S. segment surfaces of the International Space Station (ISS) is reported, along with a comparison to the experimentally established strain ATCC 1015. Whole-genome sequencing of JSC-093350089 revealed enhanced genetic variance when compared to publicly available sequences of A. niger strains. Analysis of the isolate’s proteome revealed significant differences in the molecular phenotype of JSC-093350089, including increased abundance of proteins involved in the A. niger starvation response, oxidative stress resistance, cell wall integrity and modulation, and nutrient acquisition. Together, these data reveal the existence of a distinct strain of A. niger onboard the ISS and provide insight into the molecular phenotype that is selected for by melanized fungal species inhabiting spacecraft environments.
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
Project description:Tomato is one of the most important crops for human consumption. Unfortunately, its production is affected by diseases caused by pathogens such as the actynomicete Clavibacter michiganensis subsp. michiganens (Cmm). This pathogen is the causal agent of the bacterial canker of tomato, considered one of the most devastating tomato diseases. To date, there are not resistant varieties of commercial tomato against Cmm. However, there are wild tomato species resistant to Cmm. Using massive sequencing, we obtained the transcriptomes of the wild tomato species Solanum arcanum LA2157 and the commercial tomato Solanum lycopersicum cv. Ailsa Craig at 8 and 24 hours after Cmm challenge. We identified potential tomato tolerance-related genes by three approaches: mapping the reads to S. lycopersicum reference genome SL3.0, performing a semi de novo transcriptome assembly and a de novo transcriptome assembly. Some functional groups such as oxylipin biosynthetic process response to wounding, response to cytokinin among others, were enriched in both tomato species, suggesting a similar response, however, genes that encode proteins such as the Polyphenol oxidase E, Ankyrin and Leucine Rich Repeat receptors were overexpressed mainly in the wild tomato species, suggesting a possible role in the defense response. Here, we uncovered new candidate genes potentially related to bacterial canker tomato defense.
Project description:Bacillus pumilus SAFR-032 was originally isolated from the Jet Propulsion Lab Spacecraft Assembly Facility and thoroughly characterized for its enhanced resistance to UV irradiation and oxidative stress. This unusual resistance of SAFR-032 is of particular concern in the context of planetary protection and calls for development of novel disinfection techniques to prevent extraterrestrial contamination. Previously, spores of SAFR-032 were exposed for 18 months to a variety of space conditions on board the International Space Station to investigate its resistance to Mars conditions and space travel. Here, proteomic characterization of vegetative SAFR-032 cells from space-surviving spores is presented in comparison to a ground control. Vegetative cells of the first passage were processed and subjected to quantitative proteomics using tandem mass tags. Approximately 60% of all proteins encoded by SAFR-032 were identified and 301 proteins were differentially expressed among the strains. The functional analysis of differentially expressed proteins revealed the downregulation of proteins related to carbohydrate transport/metabolism and energy production/conversion, which was validated by enzymatic assays. The same space-surviving strains showed upregulation of proteins related to competitive growth and stress response. Observed protein profiles provide insights into the possible molecular mechanisms of B. pumilus SAFR-032 to adapt and resist extreme extraterrestrial environments.
Project description:We present the first genome-wide identification and characterizaion of 422 novel sRNAs in R. capsulatus. In addition we report a comparative analysis of conserved sRNAs across 24 bacterial species.