Project description:The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycetes-caused diseases such as Pythium myriotylum-caused rhizome rot in ginger leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using N. benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass content. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones, and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stress and the mechanisms of action of P. oligandrum as a biocontrol agent.
Project description:White rot fungi are able to degrade woody lignin and other persistent organic compounds including artificial chemicals (e.g. chlorinated dioxin) in secondary metabolism. This ability has potential in a wide range of biotechnological applications including remediation of organopollutants and the industrial processing of paper and textiles. Ligninolytic fungi secondarily secrete extracellular oxidative enzymes thought to play an important role in these compounds decay. However, detail of metabolic pathway and initiation signals of the degradation system is unclear. To investigate genes directly and indirectly related to it, we constructed long serial analysis of gene expression (Long SAGE) library from the most studied white rot fungus, Phanerochaete chrysosporium. Keywords: transcriptome profiling
2007-12-31 | GSE6649 | GEO
Project description:Plant Growth Promoting Bacteria as Biofertilizers
Project description:White rot fungi are able to degrade woody lignin and other persistent organic compounds including artificial chemicals (e.g. chlorinated dioxin) in secondary metabolism. This ability has potential in a wide range of biotechnological applications including remediation of organopollutants and the industrial processing of paper and textiles. Ligninolytic fungi secondarily secrete extracellular oxidative enzymes thought to play an important role in these compounds decay. However, detail of metabolic pathway and initiation signals of the degradation system is unclear. To investigate genes directly and indirectly related to it, we constructed long serial analysis of gene expression (Long SAGE) library from the most studied white rot fungus, Phanerochaete chrysosporium. Keywords: transcriptome profiling To analyze the transcriptome profile during the initiation of manganese peroxidase (MnP) and lignin peroxidase (LiP) production in Phanerochaete chrysosporium, we constructed the day 3 culture (just started the enzyme production) library and the day 2 culture (the activity of enzymes is not detected) library.