Project description:To investigate the impact of TMAO on Myeloid cells. An RNA-seq analysis of myeloid cells was performed with and without TMAO treatment.
Project description:Stroke is a kind of cerebrovascular disease with high mortality. TMAO has been shown to aggravate stroke outcomes, but its mechanism remains unclear. Mice were treated with TMAO in normal saline by oral gavage for 14 consecutive days. Then, mice were made into MCAO models. Neurological score, infarct volume, neuronal damage and markers associated with inflammation were assessed. Since microglia played a crucial role in stroke, microglia of MCAO mice were isolated for high-throughput sequencing to identify the most differentially expressed gene following TMAO treatment. Afterward, the downstream pathways of TMAO were investigated using primary microglia. Our results demonstrated that TMAO promoted the release of inflammatory cytokines in the brain of MCAO mice and promoted the activation of OGD/R microglial inflammasome, thereby exacerbating stroke outcomes. FTO/IGF2BP2 inhibited NLRP3 inflammasome activation in OGD/R microglia by downregulating the m6A level of NLRP3, TMAO can inhibit the expression of FTO and IGF2BP2, thus promoting the activation of NLRP3 inflammasome in OGD/R microglia. In conclusion, these results demonstrated that TMAO promotes NLRP3 inflammasome activation of microglia aggravating neurological injury in stroke through FTO/IGF2BP2.
Project description:Inflammasome, activated by pathogen-derived and host-derived danger signals, constitutes a multimolecular signaling complex that serves as a platform for caspase-1 (CASP1) activation and interleukin-1beta (IL1B) maturation. The activation of NLRP3 inflammasome requires two-step signals. The first “priming” signal (Signal 1) enhances gene expression of inflammasome components. The second “activation” signal (Signal 2) promotes the assembly of inflammasome components. Deregulated activation of NLRP3 inflammasome contributes to the pathological processes of Alzheimer’s disease (AD) and multiple sclerosis (MS). However, at present, the precise mechanism regulating NLRP3 inflammasome activation and deactivation remains largely unknown. By genome-wide gene expression profiling, we studied the molecular network of NLRP3 inflammasome activation-responsive genes in a human monocyte cell line THP-1 sequentially given two-step signals. We identified the set of 83 NLRP3 inflammasome activation-responsive genes. Among them, we found the NR4A nuclear receptor family NR4A1, NR4A2, and NR4A3, the EGR family EGR1, EGR2, and EGR3, the IkappaB family NFKBIZ, NFKBID, and NFKBIA as a key group of the genes that possibly constitute a negative feedback loop for shutting down inflammation following NLRP3 inflammasome activation. By molecular network analysis, we identified a complex network of NLRP3 inflammasome activation-responsive genes involved in cellular development and death, and immune and inflammatory responses, where transcription factors AP-1, NR4A, and EGR serve as a hub. Thus, NLRP3 inflammasome activation-responsive genes constitute the molecular network composed of a set of negative feedback regulators for prompt resolution of inflammation. To load the Signal 1 (S1), THP-1 cells were incubated for 3 hours in the culture medium with or without inclusion of 0.2 microgram/ml lipopolysaccharide (LPS). To load the Signal 2 (S2), they were incubated further for 2 hours in the culture medium with inclusion of 10 microM nigericin sodium salt dissolved in ethanol or the equal v/v% concentration of ethanol (vehicle), followed by processing for microarray analysis on Human Gene 1.0 ST Array (Affymetrix).
Project description:The NLRP3 inflammasome is dysregulated in autoinflammatory disorders caused by inherited mutations and contributes to the pathogenesis of several chronic inflammatory diseases. In this study, we discovered that disulfiram, a safe FDA-approved drug, specifically inhibits the NLRP3 inflammasome, but not the NLRC4 or AIM2 inflammasomes. Disulfiram suppresses caspase-1 activation, ASC speck formation, and pyroptosis induced by several stimuli that activate NLRP3. Mechanistically, NLRP3 is palmitoylated at cysteine 126, a modification required for its localization to the trans-Golgi network and inflammasome activation which was inhibited by disulfiram. Administration of disulfiram to animals inhibited the NLRP3, but not the NLRC4 inflammasome in vivo. Our study uncovers a mechanism by which disulfiram targets NLRP3 and provides a rationale for using a safe FDA-approved drug for the treatment of NLRP3-associated inflammatory diseases.
Project description:The immune system may respond to engineered nanomaterials (ENM) through inflammatory reactions. The NLRP3 inflammasome responds to a wide range of ENM, and its activation is associated with various inflammatory diseases. The objective of the study was to compare the effects of gold ENM of different shapes on NLRP3 inflammasome activation and related signalling pathways. Differentiated THP-1 cells (wildtype, ASC- or NLRP3-deficient), were exposed to PEGylated gold nanorods, nanostars, and nanospheres. Exposed cells were subjected to gene expression analysis. Nanorods, but not nanostars or nanospheres, showed NLRP3 inflammasome activation. ASC- or NLRP3-deficient cells did not show this effect. Gold nanorod-induced NLRP3 inflammasome activation was accompanied by downregulated sterol/cholesterol biosynthesis, oxidative phosphorylation, and purinergic receptor signalling. In conclusion, the shape and surface chemistry of gold nanoparticles determine NLRP3 inflammasome activation.
Project description:This experiment was performed to analyze the contribution of NLRP3 inflammasome activation to age-related changes in hippocampal RNA. The hypothesis was that decreased inflammasome activation would reduce hippocampal inflammation. Results indicate that inflammasome knockout animals are protected from age-related changes in hippocampal gene expression Gene expression profiles of young (1 month) and old (21-23 month) wild type, CIAS -/- and ASC -/- mouse hippocampal tissue were compared. Total mRNA was extracted using Trizol.
Project description:The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of NLRP3 inflammasome through multiple mechanisms including generation of mitochondrial ROS. Here we report that mitochondrial electron transport chain (ETC) complexes I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase (AOX), which can respectively complement the functional loss of mitochondrial complex I or III, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP but a ROS independent mechanism.
Project description:Autophagy and autophagy-associated genes are closely linked to NLRP3-mediated inflammation in inflammatory disorders. This study determined that the functions of CCDC50, the novel autophagy receptor, in regulating the activation of NLRP3 inflammasome and associated inflammatory diseases. We performed transcriptome profiling (RNA-seq) and quantitative reverse transcription polymerase chain reaction (qRT–PCR) in shCtrl and shCCDC50 cells to evaluate the inflammatory responses regulated by CCDC50. The deep sequencing results showed that CCDC50 defciency caused increased NLRP3 inflammasome assembly and upregulation of associated disease pathways.
Project description:The NLRP3 inflammasome is a multi-protein complex that triggers the activation of the inflammatory protein caspase-1 and the maturation of the cytokine IL-1 in response to microbes and other danger signals in host cells. Here, we sought a deeper understanding of how the NLRP3 inflammasome is regulated. We found that inflammasome activation induced the Src family kinase Lyn to phosphorylate NLRP3 at Tyr918, and that this phosphorylation of NLRP3 correlated with a subsequent increase in its ubiquitination, which facilitated its proteasome-mediated degradation. NLRP3 tyrosine phosphorylation and ubiquitination was abrogated in Lyn-deficient macrophages, which produced increased amounts of IL-1. Furthermore, mice lacking Lyn were highly susceptible to LPS-induced septic shock in an NLRP3-dependent manner. Our data demonstrate that Lyn-mediated tyrosine phosphorylation of NLRP3 is a prerequisite for its ubiquitination, thus dampening NLRP3 inflammasome activity.