Project description:We applied high throughput sequencing technology to identify microRNA genes in bighead carp and silver carp. We identified 167 conserved miRNAs in bighead carp and 166 in silver carp. By two computational stragegies, we obtained 39 novel miRNAs in bighead carp and 54 in silver carp, for which, no homologs were found in other species. Several miRNA* sequences were found in our dataset as well, some particular ones might have gene regulation function. Gain and loss of family members were observed in several miRNA families, which partially reflected the fate of miRNA gene duplicates.
Project description:We applied high throughput sequencing technology to identify microRNA genes in bighead carp and silver carp. We identified 167 conserved miRNAs in bighead carp and 166 in silver carp. By two computational stragegies, we obtained 39 novel miRNAs in bighead carp and 54 in silver carp, for which, no homologs were found in other species. Several miRNA* sequences were found in our dataset as well, some particular ones might have gene regulation function. Gain and loss of family members were observed in several miRNA families, which partially reflected the fate of miRNA gene duplicates. Total RNA of juvenile bighead carp and silver carp were sequenced on one Solexa lane, respectively.
Project description:China produces more than 77.9% of the world's production of silver carp in 2020 with the production of 3812.9 kiloton.3 The high consumption of silver carp in China is mainly by using its edible muscles for manufacture of surimi-based seafoods or other muscle foods, which may contribute high quality protein resource and other valuable nutrients in human diets. This project is to understanding the muscle composition of slaughtered fish skeletal muscle use the proteomics methods. The proteomics was performed based on the improved DDA experiment with extensive fractionation and prolonged separation of peptides, and protein searching database was informed by the Iso-seq transcriptomics.
Project description:Whilst the hybrids of F1 generations usually experience heterosis for fitness-related traits (including the resistance to parasites), post-F1 generations, due to Dobzhansky–Muller genetic incompatibilities, express numerous disadvantageous traits (including susceptibility to parasites). Genetic disruption in hybrids may also result from the broken system of cyto-nuclear coadaptation. Maternal backcrosses (each parent having with the same mtDNA of parents) and paternal backcrosses (each parent having with different mtDNA of parents) have the same nuclear genetic compositions, but differ in cytoplasmic genetic elements, affecting their viability and survival. Spring viraemia of the carp virus (SVCV), a disease with a serious economic impact in aquacultures, affects almost exclusively cyprinids, primarily common carp, and causes high mortality, whilst gibel carp is a less susceptible species. Our study was focused on the transcriptome profile analysis of head kidney to reveal differential gene expression in highly susceptible common carp, weakly susceptible gibel carp, and hybrid lines, hypothetizing that the patterns of differential gene expression will reflect hybrid heterosis in F1 generations and hybrid breakdown in backcrosses and F2 generations. We expected the differences in differential gene expression between maternal and paternal backcrosses to be in line with the hypothesis of broken cyto-nuclear coadaptation.
2023-09-12 | GSE240031 | GEO
Project description:isoform sequencing (Iso-Seq) of silver carp