Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:This project contains raw data, intermediate files and results is a re-analysis of the publicly available dataset from the PRIDE dataset PXD005780. The RAW files were processed using ThermoRawFileParser, SearchGUI and PeptideShaker through standard settings (see ‘Data Processing Protocol’). This reanalysis work is part of the MetaPUF (MetaProteomics with Unknown Function) project, which is a collaboration between EMBL-EBI and the University of Luxembourg. The dataset was selected with the following conditions: 1. It has been made publicly available in PRIDE and focuses on metaproteomics of the human gut; 2. The corresponding metagenomics assemblies were also available from ENA (European Nucleotide Archive) or MGnify. The processed peptide reports for each sample are available to view at the contig level on the MGnify website. In total, the reanalysis identified 15,417 unique proteins from 15 samples.
Project description:The gut microbiota is an essential contributor to human health and disease and offers an extensive resource of enzymes. Although functional metagenomics methods could predict a correlation between enzyme abundance and functional activity, many enzymes in the microbiome still remain uncharacterized. To discover the differing activities between similar annotated proteins in microbiome, approaches capable of detecting biochemical activity with identification of responsible microbes and enzymes are needed. α-Galactosidases (AGALs) are abundant in the host gut microbiota for hydrolysis of galactooligosaccharides, galactose-containing polysaccharides and glycoconjugates, and have multiple biotechnological applications with increasing demand of global AGAL market, such as food ingredients, animal feed, and biomedical sectors. However, many gut microbial AGALs still lack functional biochemical identification, which limits their usage in industrial and therapeutic applications.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.