Project description:Potentilla indica and Melastoma dodecandrum lour are medicinal herbs used in traditional Chinese medicine. We sampled the plants from Nanyang Technological University's herb garden for transcriptomics analysis.
Project description:Recent results demonstrated that either non-coding or coding genes generate phased secondary small interfering RNAs (phasiRNAs) guided by specific miRNAs. Till now, there is no studies for phasiRNAs in Panax notoginseng (Burk.) F.H. Chen (P. notoginseng), an important traditional Chinese herbal medicinal plant species. Here we performed a genome-wide discovery of phasiRNAs and its host PHAS loci in P. notoginseng by analyzing small RNA sequencing profiles. Degradome sequencing profile was used to identify the trigger miRNAs of these phasiRNAs and potential targets of phasiRNAs. We also used RLM 5'-RACE to validate some of the identified phasiRNA targets. After analyzing 24 small RNA sequencing profiles of P. notoginseng, 204 and 90 PHAS loci that encoded 21 and 24 nucleotide (nt) phasiRNAs were identified. Furthermore, we found that phasiRNAs produced from some pentatricopeptide repeat-contain (PPR) genes target another layer of PPR genes as validated by both the degradome sequencing profile and RLM 5'-RACE analysis. We also find that miR171 with 21 nt triggers the 21 nt phasiRNAs from its conserved targets. We validated that some phasiRNAs generated from PPRs are functional by targeting other PPRs in trans. These results provide the first set of PHAS loci and phasiRNAs in P. notoginseng, and enhance our understanding of PHAS in plants.
Project description:Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and anti-aging properties and are being used in the medical systems of East Asian countries. Ginseng is grown in low-light and low-temperature conditions and its growth is strongly inhibited at temperatures above 25 ℃. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at protein level. Therefore, here we utilized a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. Total proteins were isolated from control (25 ℃) and ginseng plants exposed to 35 ℃ for 1 and 3 days and subjected to in-solution trypsin digestion. A total of 3,359 ginseng proteins were identified when searched in an in-house developed RNA-seq (PAC-BIO) database.
Project description:Ginsenosides are a class of natural product triterpene saponins and almost exclusively in the plant genus Panax which has a long history of use as dietary supplements. Pharmacological research demonstrated that ginsenosides have multiple bioactivities. Ginsenoside is produced at high levels within Panax japonicus, and we have performed Lable-free quantitaion analysis of multiple tissues from this species in order to investigate the biosynthetic genes required for producing ginsenoside.