Project description:Transcriptome sequencing from Nicotiana benthamiana leaves non-infected and infected with Turnip mosaic virus at 6 days post inoculation.
Project description:In this study we used vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem-associated translatome responses to infection by tobacco mosaic virus (TMV) in the systemic host Nicotiana benthamiana. Three different promoter:FLAG-RPL18 lines were used. These included two phloem specific promoters (pSUC2 and pSULTR2;2) as well as the more ubiquitously expressed cauliflower mosaic virus 35S promoter (p35S). Immunopurification of ribosome-mRNA complexes was accomplished by the method described in Reynoso et al. (Plant Functional Genomics: Methods and Protocols, 185-207; 2015). The dataset includes samples from the leaves of 5-week-old plants inoculated with TMV (1 mg/mL) or mock inoculated with sterile water.
Project description:Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses in plants. It has been discovered that SLs play an important role in regulating plant immune resistance to pathogens, but there are currently no reports on their role in the interaction between Nicotiana benthamiana and Tobacco mosaic virus (TMV). In this study, the exogenous application of SLs weakened the resistance of N. benthamiana to TMV, promoting TMV infection, whereas the exogenous application of Tis108, an SL inhibitor, resulted in the opposite effect. Virus-induced gene silencing (VIGS) inhibition of two key SL synthesis enzyme genes, NtCCD7 and NtCCD8, enhanced the resistance of N. benthamiana to TMV. Additionally, we conducted a screening of N. benthamiana related to TMV infection. TMV-infected plants treated with SLs were compared to the control by using RNA-seq. KEGG enrichment analysis and weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) suggested that plant hormone signaling transduction may play a significant role in the SL-TMV-N. benthamiana interactions. This study reveals new functions of SLs in regulating plant immunity and provides a reference for controlling TMV diseases in production.
Project description:Nicotiana benthamiana was infected with several strains of grapevine fanleaf virus (GFLV). Apical tissue was collected 4, 7, and 12 days after inoculation, with identical samples for shotgun proteomics and transcriptomics analysis. Five leaf discs per leaf were collected a pooled by three plants into a single tube at each time point. Five biological replicates represent each treatment at each time point for a total of 75 samples. Two samples were lost between sample processing and data acquisition. The analysis methods between proteomics and transcriptomics were then cross-analyzed for host genes responsible for phenotypic differences upon infection.
Project description:Species from the genus Colletotrichum are the causal agents of anthracnose which contribute to significant losses to the production of commercially grown crops. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, as well as Colletotrichum gloeosporioides, which infects a wide range of fruits and vegetables, were sequenced. A custom microarray was designed for Colletotrichum orbiculare and used to assess gene expression during infection of Nicotiana benthamiana. Gene expression of Colletotrichum orbiculare growing on its host Nicotiana benthamiana was assessed at 24 hours post inoculation, 3 days post inoculation and 7 days post inoculation. Mycelia growing in vitro and ungerminated conidia were used as controls. Three replicates were performed for each time point.
Project description:We analyzed the PD-enriched fraction from Turnip mosaic virus (TuMV)-infected Nicotiana benthmiana (N. benthamiana) by using label-free quantitative proteomics of which 100 and 48 were significantly increased and decreased respectively when compared with mock plants.
Project description:Provided data came from a detailed study on Nicotiana benthamiana 16c plants where we use Tobacco Rattle Virus (TRV) as a molecular switch to change the chromatin state of a reporter gene (P35S::GFP) from an actively transcribed to a transcriptionally silenced state. Our approach enables us to interrogate different chromatin states of the same locus with the same set of CRISPR/Cas9 genome editing reagents and systematically describe the effect of chromatin state on the frequency and type of mutations induced at various Cas9 targets in a huge set of independently edited cells.