Project description:Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. The disorder of gut microbiota is involved in the pathophysiological process of various neurological diseases, and many studies have confirmed that gut microbiota is involved in the progression of PD. As one of the most effective methods to reconstruct gut microbiota, fecal microbiota transplantation (FMT) has been considered as an important treatment for PD. However, the mechanism of FMT treatment for PD is still lacking, which requires further exploration and can facilitate the application of FMT. As a model organism, Drosophila is highly conserved with mammalian system in maintaining intestinal homeostasis. In this study, there were significant differences in the gut microbiota of conventional Drosophila colonized from PD patients compared to those transplanted from normal controls. And we constructed rotenone-induced PD model in Drosophila followed by FMT in different groups, and investigated the impact of gut microbiome on transcriptome of the PD host. Microbial analysis by 16S rDNA sequencing showed that gut microbiota could affect bacterial structure of PD, which was confirmed by bacterial colonization results. In addition, transcriptome data suggested that gut microbiota can influence gene expression pattern of PD. Further experimental validations confirmed that lysosome and neuroactive ligand-receptor interaction are the most significantly influenced functional pathways by PD-derived gut microbiota. In summary, our data reveals the influence of PD-derived gut microbiota on host transcriptome and helps better understanding the interaction between gut microbiota and PD through gut-brain axis. The present study will facilitate the understanding of the mechanism underlying PD treatment with FMT in clinical practice.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:At birth, newborns are exposed to gut microbiota, which plays a critical role in host physiology. A reduced level of microbial diversity has been associated with necrotizing enterocolitis (NEC), one of the most deadly diseases in premature infants, but the underlying disease mechanisms are still poorly understood. Although the epithelial turnover of germ free mice is significantly delayed compared to conventionally raised mice, it remains unclear how gut microbiota exposure in the early postnatal period promotes stem cell renewal and differentiation. By analyzing genetic and experimental mouse models and performing single cell analysis, we demonstrate that gut microbiota promotes stem cell differentiation through the activation of critical stromal niche components. Our single cell analysis reveals that gut microbiota controls the size and heterogeneity of macrophage populations that secrete Wnt ligands, thereby maintaining the proliferation of intestinal telocytes, a recently identified gut mesenchymal stem cell niche. We show that stem cell differentiation, when impaired by antibiotic treatment promotes NEC, while treatment with Lactobacillus, which in NEC is dramatically less abundant, rescues NEC-like pathology through the activation of macrophage and telocyte niches. Our work highlights the mechanisms of how gut microbiota-facilitate mesenchymal niche proliferation which supports stem cell differentiation in early postnatal development.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:Colonic microbiome has been found to contribute to the development of colorectal cancer. We speculate that gut microbiota related to colorectal cancer relapse after curative treatment. This study aim to discover if any difference of gut microbiota exist in patients who suffer from cancer relapse compared with patients who do not. Finally develop patient-centred programmes of surveillance protocols base on microbiota analysis.
Project description:Sparstolonin B is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. SsnB has previously demonstrated anti-angiogenic properties. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. We used microarrays to examine how SsnB affected the gene expression of human umbilical vein endothelial cells (HUVECs), focusing in particular on pathways related to angiogenesis.
Project description:Sparstolonin B is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. SsnB has previously demonstrated anti-angiogenic properties. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. We used microarrays to examine how SsnB affected the gene expression of human coronary artery endothelial cells (HCAECs), focusing in particular on pathways related to angiogenesis.