Project description:TMT labeled proteome and acetylated proteome were used to reveal molecular mechanisms adapting to the physiological changes between pre- and peak-laying hens
Project description:To study the effect of chronic heat stress on producing laying type hens, RNA-Seq was performed on breast samples during a 4-week heat stress experiment. RNA-Seq samples were collected 3-hour, 2-weeks, and 4-weeks post heat from both control (unheated) and treatment (heated) birds. RNA was extracted from the tissues with RNAqueous Total RNA Isolation Kit, treated with DNase, and mRNA cDNA libary were prepared with Illumina TrueSeq Stranded mRNA Library Prep Kit. Sequencing was done on 4 lanes with 12 libraries per lane on Illumina HiSeq 3000 platform.
Project description:To study the effect of chronic heat stress on producing laying type hens, RNA-Seq was performed on liver samples during a 4-week heat stress experiment. RNA-Seq samples were collected 3-hour, 2-weeks, and 4-weeks post heat from both control (unheated) and treatment (heated) birds. RNA was extracted from the tissues with mirVana miRNA Isolation Kit, treated with DNase, and mRNA cDNA libary were prepared with Illumina TrueSeq Stranded mRNA Library Prep Kit. Sequencing was done on 4 lanes with 12 libraries per lane on Illumina HiSeq 3000 platform.
Project description:To study the effect of chronic heat stress on mature laying type hens, RNA-Seq was performed on cecal tonsil samples during a 4-week heat stress experiment. RNA-Seq samples were collected 3-hour, 2-weeks, and 4-weeks post heat from both control (unheated) and treatment (heated) birds. RNA was extracted from the tissues with RNAqueous Total RNA Isolation Kit, treated with DNase, and mRNA cDNA libary were prepared with Illumina TrueSeq Stranded mRNA Library Prep Kit. Sequencing was done on 2 lanes with 12 libraries per lane on Illumina HiSeq 3000 platform.
Project description:Heat stress (HS) can damage the integrity of the intestinal mucosal barrier, leading to decreased poultry productivity. This study aimed to identify candidate genes related to acute HS in breeder hens and provide insight into the molecular mechanisms underlying acute HS in gut health. Fifty 28-week-old breeder hens were divided into two groups (25 hens each) raised under thermoneutral zone (23 °C) and acute HS (36 °C, 6 hours) conditions. The heart rate and cloacal temperature were measured in all hens, and jejunal mucosa tissues were randomly collected from 12 hens per treatment for RNA-sequencing analysis. The results indicated a significant increase in the heart rate and cloacal temperature in hens exposed to acute HS (P < 0.05). Transcriptome analysis identified 138 differentially expressed genes (DEGs) in heat-stressed breeder hens, including 75 upregulated DEGs containing heat shock protein (HSP), energy homeostasis metabolism-related gene (PDK4), and fat metabolism-related genes (PPARA and CD36), and 63 downregulated DEGs containing the bile acid transporter gene (SLC10A2). Gene ontology analysis revealed significant enrichment in biological processes related to heat response and cholesterol biosynthesis. Kyoto Encyclopedia of Genes and Genomes analysis highlighted several significant pathways, including steroid biosynthesis, steroid hormone biosynthesis, protein processing in endoplasmic reticulum, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, and the adipocytokine signaling pathway. Protein-protein interaction network analysis involving two large networks: one containing several upregulated HSPs and genes related to energy homeostasis and fat metabolism (PDK4, PPARA, and CD36) and glucose transporter (SLC2A5), and the other containing downregulated DEGs related to cholesterol biosynthesis. Overall, acute HS might affect energy metabolism, fat metabolism, and glucose transport in the jejunal mucosa of breeder hens. Heat-stressed hens could restore the nutritional function of the jejunal mucosa by increasing the expression of HSPs. These findings provide a theoretical framework for further investigation into the molecular regulatory mechanisms responsible for HS-induced changes in the gut health of poultry.
Project description:Purpose: With the advent of Next-generation sequencing (NGS), several novel genes/proteins and cellular pathways in wide variety of tissues has been discovered. The aim of this study are to perform uterine transcriptome profiling (RNA-seq) to determine differently expressed genes in laying and non-laying hens and to further validate the expression of candidate genes using real-time quantitative reverse transcription polymerase chain reaction (qRT–PCR) in laying, non-laying and molting hens. Methods: Uterine mRNA profiles of 35-60 weeks-old laying and non-laying hens, three each, were generated with NextSeq 500 sequencer in single-end mode with a read length of 1x76 bp. Raw sequencing reads were cleaned and trimmmed with Prinseq tool and good reads were aligned against the chicken reference gemone (Galgal 5.0) in Array Studio. Differential gene expression analysis was performed by the DESeq2 algorithm as implemented in Array Studio. The genes with at least two-fold change (FC) and Benjamini and Hochberg q-value < 0.05 were called differentially expressed. Results: Using an optimized data analysis workflow, we mapped about 32 million reads from layers and 28 million reads from non-layers to the chicken genome. A total of 19,152 gene transcripts were annotated from Ensembl alignment which represents 50.24% of the chicken genome assembly. Differential gene expression analysis showed 616 were differentially expressed between layer and non-layer hens. 229 DEGs were significantly up-regulated and 286 were significantly down-regulated in the laying hens when compared to the non-laying hens. Twelve candiate genes, linked to calcium remodeling, were identified by gene function analysis and validated using qPCR. MEPE, CALCB, OTOP2, STC2 and ATP2C2 were confirmed to be highly expressed in laying hens as compared to molting and non-laying hens. RNA-seq and qPCR data for relative gene expression were highly correlated (R2 =0.99). Conclusions: Our study reports the expression of four novel genes that are speculated to transport calcium ions across the uterine epithellium for eggshell mineralization. These genes can be used as quantitative basis of selecting hens with an improved eggshell quality.
Project description:Purpose: With the advent of Next-generation sequencing (NGS), several novel genes/proteins and cellular pathways in wide varitey of tissues has discovered. The aim of this study are to perform transcriptome profiling (RNA-seq) of magnum to determine differently expressed genes in laying and non-laying hens and to further validate the expression of candidate genes using real-time quantitative reverse transcription polymerase chain reaction (qRT–PCR) in laying, non-laying and molting hens. Methods: Magnum mRNA profiles of 35-60 weeks-old laying and non-laying hens, three each, were generated with NextSeq 500 sequencer in single-end mode with a read length of 1x76 bp. Raw sequencing reads were cleaned and trimmmed with Prinseq tool and good reads were aligned against the chicken reference gemone (Galgal 5.0) in Array Studio. Differential gene expression analysis was performed by the DESeq2 algorithm as implemented in Array Studio. The genes with at least three-fold change (FC) and Benjamini and Hochberg q-value < 0.05 were called differentially expressed. Results: Using an optimized data analysis workflow, we mapped about 30.5 million reads from layers and 33.4 million reads from non-layers to the chicken genome. A total of 19,152 gene transcripts were annotated from Ensembl alignment which represents 50.24% of the chicken genome assembly. Differential gene expression analysis showed 540 were differentially expressed between layer and non-layer hens. 152 DEGs were significantly up-regulated and 388 were significantly down-regulated in the laying hens when compared to the non-laying hens. Conclusions: Our study reports the expression of several pre-discovered and many novel genes that may be involved in the transport of precurosor molecules for biosynthesis and secretion of the egg-white proteins in the magnum. These genes can be used as quantitative basis of selecting hens with an improved egg quality.
Project description:To realize the gene expression in response to acute heat stress in chicken small yellow follicles, we have employed whole genome microarray expression profiling as we have employed whole genome microarray expression profiling as a tool to identify genes response to acute heat stress. Female B strain Taiwan country chickens were subjected to acute heat stress (38℃) for 2 h, and then exposed to 25℃, with small yellow follicles collected 0, 2, and 6 h after the cessation of heat stress, using non heat-stressed hens as a control group (n = 3 hens per group). Based on a chicken 44K oligo microarray, 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher in the small yellow follicles of the heat-stressed chickens from those of the control chickens. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR).
Project description:To realize the gene expression in response to acute heat stress in chicken small yellow follicles, we have employed whole genome microarray expression profiling as we have employed whole genome microarray expression profiling as a tool to identify genes response to acute heat stress. Female B strain Taiwan country chickens were subjected to acute heat stress (38℃) for 2 h, and then exposed to 25℃, with small yellow follicles collected 0, 2, and 6 h after the cessation of heat stress, using non heat-stressed hens as a control group (n = 3 hens per group). Based on a chicken 44K oligo microarray, 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher in the small yellow follicles of the heat-stressed chickens from those of the control chickens. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR).