Project description:Bacillus licheniformis-fermented products (BLFP) are probiotics with antibacterial, antiviral, and anti-inflammatory properties that can improve growth performance. This study aimed to, firstly, compare the fecal microbiota of cats with chronic diarrhea (n = 8) with that of healthy cats (n = 4) from the same household using next-generation sequencing and, secondly, evaluate the effectiveness of oral administration of BLFP in relieving clinical signs and altering the intestinal microbiota in diarrheal cats. Six out of eight cats with diarrhea showed clinical improvement after BLFP administration for 7 days, and in two cats the stool condition was normal. A higher Firmicutes/Bacteroidetes ratio was noted in the feces of diarrheal cats without clinical improvement as compared with those in the healthy control group and in the diarrheal cats with clinical improvement after receiving BLFP. The phylum Bacteroidetes and class Bacteroidia decreased significantly in diarrheal cats regardless of BLFP administration. Blautia spp., Ruminococcus torques, and Ruminococcus gnavus, which belong to the Clostridium cluster XIVa and have been reported as beneficial to intestinal health, increased significantly in feces after BLFP treatment. Furthermore, a significant decrease in Clostridium perfringens was noted in diarrheal cats after BLFP administration. Overall, BLFP could be a potential probiotic to relieve gastrointestinal symptoms and improve fecal microbiota in cats with chronic diarrhea.
Project description:To resist to ?-lactam antibiotics Eubacteria either constitutively synthesize a ?-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of ?-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a ?-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible ?-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.
Project description:Acetoin is a potential platform compound for a variety of chemicals. Bacillus licheniformis MW3, a thermophilic and generally regarded as safe (GRAS) microorganism, can produce 2,3-butanediol with a high concentration, yield, and productivity. In this study, B. licheniformis MW3 was metabolic engineered for acetoin production. After deleting two 2,3-butanediol dehydrogenases encoding genes budC and gdh, an engineered strain B. licheniformis MW3 (ΔbudCΔgdh) was constructed. Using fed-batch fermentation of B. licheniformis MW3 (ΔbudCΔgdh), 64.2 g/L acetoin was produced at a productivity of 2.378 g/[L h] and a yield of 0.412 g/g from 156 g/L glucose in 27 h. The fermentation process exhibited rather high productivity and yield of acetoin, indicating that B. licheniformis MW3 (ΔbudCΔgdh) might be a promising acetoin producer.
Project description:Bacillus licheniformis strain TAB7 is a bacterium used as a commercial deodorizing agent for compost in Japan. In this work, its ability to biotransform the following monocyclic phenolic compounds was assessed: ferulate, vanillate, p-coumarate, caffeate, protocatechuate, syringate, vanillin, and cinnamate (a precursor for some phenolic compounds). These compounds are abundant in composting material and are reported to have allelopathic properties. They come from sources such as plant material decomposition or agro-industrial waste. Biotransformation assays were carried out in LB supplemented with 0.2 mg/mL of an individual phenolic compound and incubated for up to 15 days followed by extraction and HPLC analysis. The results showed that TAB7 could biotransform ferulate, caffeate, p-coumarate, vanillate, protocatechuate, and vanillin. It, however, had a poor ability to transform cinnamate and syringate. LC-MS/MS analysis showed that ferulate was transformed into 4-vinylguaiacol as the final product, while caffeate was transformed into 4-ethylcatechol. TAB7 genome analysis suggested that, while TAB7 may not mineralize phenolic compounds, it harbored genes possibly encoding phenolic acid decarboxylase, vanillate decarboxylase, and some protocatechuate degradation pathway enzymes, which are involved in the catabolism of phenolic compounds known to have negative allelopathy on some plants. The results thus suggested that TAB7 can reduce such phenolic compounds in compost.