Project description:We described in this work the reproductive barrier between Capsella rubella and Capsella grandiflora leading to hybrid seed inviability. The transcriptome revealed a similar response to the one observed in interploidy hybrid seeds.
Project description:DNASeq reads from pools of female or male DrosDel and w1118 (parental strain for the Df/+ flies). Samples are named in this dataset according to the following sample naming scheme: tissue_genotype shorthand_sex_DNASeq_biological replicate #. We sequenced DNA from pools of female or male DrosDel and w1118 (parental strain for the Df/+ flies).
Project description:Hybrid phenotypes that contribute to postzygotic reproductive isolation often exhibit pronounced asymmetry, both between reciprocal crosses and between the sexes in accordance with Haldane's rule. Inviability in mammalian hybrids is associated with parent-of-origin placental growth abnormalities for which misregulation of imprinted genes is the leading candidate mechanism. However, direct evidence for the involvement of imprinted genes in hybrid growth dysplasia is limited. We used transcriptome and reduced representation bisulfite sequencing to conduct the first genome-scale assessment of the contribution of imprinted genes to parent-of-origin placental growth dysplasia in the cross between the house mouse (Mus musculus domesticus) and the Algerian mouse (Mus spretus). Imprinted genes with transgressive expression and methylation were concentrated in the Kcnq1 cluster, which contains causal genes for prenatal growth abnormalities in mice and humans. Hypermethylation of the cluster’s imprinting control region, and consequent misexpression of the genes Phlda2 and Ascl2, is a strong candidate mechanism for transgressive placental undergrowth. Transgressive placental and gene regulatory phenotypes, including expression and methylation in the Kcnq1 cluster, were more extreme in hybrid males. While consistent with Haldane’s rule, male-biased defects are unexpected in rodent placenta because the X-chromosome is effectively hemizygous in both sexes. In search of an explanation we found evidence of leaky imprinted (paternal) X-chromosome inactivation in hybrid female placenta, an epigenetic disturbance that may buffer females from the effects of X-linked incompatibilities to which males are fully exposed. Sex differences in chromatin structure on the X and sex-biased maternal effects are non-mutually exclusive alternative explanations for adherence to Haldane’s rule in hybrid placenta. The results of this study contribute to understanding the genetic basis of hybrid inviability in mammals, and the role of imprinted genes in speciation.
Project description:DNASeq reads from pools of female or male DrosDel and w1118 (parental strain for the Df/+ flies). Samples are named in this dataset according to the following sample naming scheme: tissue_genotype shorthand_sex_DNASeq_biological replicate #.
2012-04-03 | GSE31550 | GEO
Project description:Tri-hybrid cross to map hybrid inviability genes in Drosophila
Project description:The hallmark of human cancer is heterogeneity, mirroring the complexity of genetic and epigenetic alterations acquired during oncogenesis. We extracted DNA of 14 cultured human ovarian carcinoma cell lines subjected to pooled shRNA screen using TRC 1.0 library, and performed DNAseq. 14 ovarian carcinoma cell lines DNAseq data.
Project description:Hybridization of eggs and sperm from closely related species can give rise to genetic diversity, or can lead to embryo inviability due to incompatibility. Although central to evolution, the cellular and molecular mechanisms underlying postzygotic barriers that drive reproductive isolation and speciation remain largely unknown. Species of the African Clawed frog Xenopus provide an ideal system to study hybridization and genome evolution. Xenopus laevis is an allotetraploid with 36 chromosomes that arose through interspecific hybridization of diploid progenitors, whereas Xenopus tropicalis is a diploid with 20 chromosomes that diverged from a common ancestor ~48 million years ago. Differences in genome size between the two species are accompanied by organism size differences, and size scaling of the egg and subcellular structures such as nuclei and spindles formed in egg extracts. Nevertheless, early development transcriptional programs, gene expression patterns, and protein sequences are generally conserved. Interestingly, whereas the hybrid produced when X. laevis eggs are fertilized by X. tropicalis sperm (le×ts) is viable, the reverse hybrid (te×ls) dies prior to gastrulation. Here, we applied cell biological tools and high-throughput methods to study the mechanisms underlying hybrid inviability. We reveal that two specific X. laevis chromosomes are incompatible with the X. tropicalis cytoplasm and are mis-segregated during mitosis, leading to unbalanced gene expression at the maternal to zygotic transition, followed by cell-autonomous catastrophic embryo death.
Project description:In this study we performed single-cell DNAseq + proteogenomics of PBMCs from COVID19 patients and patients with clonal hematopoiesis to identify the cell types that carry the mutations of interest.