Project description:ETS gene fusions have been characterized in a majority of prostate cancers, however key molecular alterations in ETS negative cancers are unclear. Here we used an outlier meta-analysis (meta-COPA) to identify SPINK1 outlier-expression exclusively in a subset of ETS rearrangement negative cancers (~10% of total cases). We validated the mutual exclusivity of SPINK1 expression and ETS fusion status, demonstrated that SPINK1 outlier-expression can be detected non-invasively in urine and observed that SPINK1 outlier-expression is an independent predictor of biochemical recurrence after resection. We identified the aggressive 22RV1 cell line as a SPINK1 outlier-expression model, and demonstrate that SPINK1 knockdown in 22RV1 attenuates invasion, suggesting a functional role in ETS rearrangement negative prostate cancers. Keywords: Genetic Modification 22RV1 cells were infected with non-targeting siRNA or siRNA against SPINK1. For reported hybridizations, the reference channel is 22RV1 cells infected with non-targeting siRNA. Duplicate hybridizations were performed with duplicate dye flips, for a total of four arrays. Over and under-expressed signatures were generated by filtering to include only features with significant differential expression (PValueLogRatio < 0.01) in all hybridizations and Cy5/Cy3 ratios > or < 1 in all hybridizations.
Project description:Serine Peptidase Inhibitor, Kazal type 1 (SPINK1) overexpression represents the second-largest prostate cancer (PCa) subtype associated with increased risk of biochemical recurrence and poor prognosis. To determine the pathways regulated by SPINK1 in 22RV1 prostate cancer cells, we performed shRNA mediated knockdown of SPINK1 using lentiviral constructs. Scrambled shRNA was used as a control. pGIPZ constructs against SPINK1 (shSPINK1-1, shSPINK1-2, shSPINK1-3) and control shScrambled construct were purchased from Dharmacon.
Project description:ETS gene fusions have been characterized in a majority of prostate cancers, however key molecular alterations in ETS negative cancers are unclear. Here we used an outlier meta-analysis (meta-COPA) to identify SPINK1 outlier-expression exclusively in a subset of ETS rearrangement negative cancers (~10% of total cases). We validated the mutual exclusivity of SPINK1 expression and ETS fusion status, demonstrated that SPINK1 outlier-expression can be detected non-invasively in urine and observed that SPINK1 outlier-expression is an independent predictor of biochemical recurrence after resection. We identified the aggressive 22RV1 cell line as a SPINK1 outlier-expression model, and demonstrate that SPINK1 knockdown in 22RV1 attenuates invasion, suggesting a functional role in ETS rearrangement negative prostate cancers. Keywords: Genetic Modification
Project description:SChLAP1 is a novel long non-coding RNA expressed in prostate cancer. Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus SChLAP1-siRNA treatment. Goal was to determine the effect of SChLAP1 knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SChLAP1 siRNA treated cells. Biological replicates: 1 control replicate, 2 treatment replicates. Technical replicates: 3 replicates per SChLAP1 siRNA. Cell lines: 22Rv1 and LNCaP.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SWI/SNF-siRNA treated cells. Three SWI/SNF proteins were targeted: SMARCA2, SMARCA4, and SMARB1. Biological replicates: 1 control replicate, 2 treatment replicates per SWI/SNF protein. Technical replicates: 1 replicate per SWI/SNF protein. Cell lines: 22Rv1 and LNCaP.
Project description:Prostate cancer is the most commonly diagnosed malignancy in the United States. While the majority of cases are cured with radiation or surgery, about 1/3 of patients will develop metastatic disease which there is no cure, and has a life expectancy of less than 5 years. Identification of antigens associated with this transition to metastatic disease is crucial for future therapies. One such antigen of interest is the SSX gene family, which are cancer/testis antigens that are associated with the epithelial to mesenchymal transition in other cancer types. Prior work has shown that, in prostate cancer, SSX expression was restricted to metastatic tissue and not primary tumor tissue which may indicate a role in disease progression. Some work has been done into the function of the SSX family, which revealed transcriptional regulator activity. But neither the targets of this activity or the function of SSX are known. Through a transcriptomics approach, we are seeking a better understanding of the different genes and pathways SSX regulates in the context of prostate cancer, and to determine if these pathways may contribute to disease progression. We analyzed the 22Rv1 prostate cancer cell under three different conditions with 3 technical replicates each (9 total samples) They are as follow: KD the 22Rv1 cell line tranfected with shRNA targetted against the gene SSX2, SCR the 22Rv1 cell line transfected with a scrambled control shRNA, WT the wildtype 22Rv1 cell line
Project description:We sought to determine the effects of SMARCA4 and SMARCA2 depletion in prostate cancer cell lines. We performed siRNA-mediated knock-down of SMARCA4 and SMARCA2 in an androgen-sensitive (LNCaP) cell line and in a castration-resistant prostate cancer (CRPC)-adenocarcinoma cell line (22Rv1) and compared global transcriptional alterations using RNA-seq.