Project description:Arnica m. effects were associated with a purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. Here Arnica m. dilutions were tested using an in vitro model of macrophages polarized towards a “wound-healing” phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24 h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c,9c, 15c or Control. None of these treatments affected cell viability. A total of 20 genes were differentially expressed comparing cells treated with Arnica m. 2c with those treated with Control only. Of these, 7 genes were up-regulated and 13 were down-regulated. Functional gene enrichment analysis showed that the most significantly upregulated function concerned 4 genes with a conserved site of EGF-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p <0.01). Protein assay in supernatants confirmed a statistically significant increase of fibronectin production in Arnica m. 2c treated cells (p<0.05). Pooled extracts of cells treated with increasing dilutions of Arnica m. (3c, 5c, 15c) showed up-regulation of the same group of genes although with lower effect size. The down-regulated transcripts derive from mitochondrial genes coding for some components of electron transport chain. These findings provide new insights into the action of Arnica m. in tissue healing and repair, identifying increased fibronectin production by macrophages as a major therapeutic target.
Project description:Arnica m. effects were associated with a purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. Here Arnica m. dilutions were tested using an in vitro model of macrophages polarized towards a “wound-healing” phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24 h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c,9c, 15c or Control. None of these treatments affected cell viability. A total of 20 genes were differentially expressed comparing cells treated with Arnica m. 2c with those treated with Control only. Of these, 7 genes were up-regulated and 13 were down-regulated. Functional gene enrichment analysis showed that the most significantly upregulated function concerned 4 genes with a conserved site of EGF-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p <0.01). Protein assay in supernatants confirmed a statistically significant increase of fibronectin production in Arnica m. 2c treated cells (p<0.05). Pooled extracts of cells treated with increasing dilutions of Arnica m. (3c, 5c, 15c) showed up-regulation of the same group of genes although with lower effect size. The down-regulated transcripts derive from mitochondrial genes coding for some components of electron transport chain. These findings provide new insights into the action of Arnica m. in tissue healing and repair, identifying increased fibronectin production by macrophages as a major therapeutic target.
Project description:In search for potential therapeutic alternatives to existing treatments for cutaneous Leishmaniasis, we have investigated the effect of Arnica tincture Ph. Eur. (a 70% hydroethanolic tincture prepared from flowerheads of Arnica montana L.) on the lesions caused by infection with Leishmania braziliensis in a model with golden hamsters. The animals were treated topically with a daily single dose of the preparation for 28 days. Subsequently, the healing process was monitored by recording the lesion size in intervals of 15 days up to day 90. As a result, Arnica tincture fully cured three out of five hamsters while one animal showed an improvement and another one suffered from a relapse. This result was slightly better than that obtained with the positive control, meglumine antimonate, which cured two of five hamsters while the other three showed a relapse after 90 days. This result encourages us to further investigate the potential of Arnica tincture in the treatment of cutaneous Leishmaniasis.