Project description:Endogenous small RNAs, including microRNAs (miRNAs) and short-interfering RNAs (siRNAs), function as posttranscriptional or transcriptional regulators in plants. miRNA function is essential for normal development and therefore likely to be important in the growth of the rice grain. To investigate the likely roles of miRNAs in rice grain development we carried out deep sequencing of the small RNA populations of rice grains. A total of 96,091 (including 23,867 reads from vegetative tissues) and 5,379,724 small RNA sequences that are longer than 17nt were generated. Approximately 94% of these small RNAs were 20-24nt in length. The majority of the small RNAs were singletons, indicating that rice genome has a very complex small RNA population, which is harder to be saturated. From these smal RNA sequences we found representatives of all 20 conserved plant miRNA families and evidence for changes in expression of miRNAs during rice grain development. Using an approach based on the presence of the miRNA and miRNA* sequences, we identified 51 novel, non-conserved rice miRNA families expressed in grains with functionally diverse predicted target genes. miRNA-guided cleavage was confirmed for a number of targets genes including ones with roles in sugar signalling and restoration of cytoplasmic male sterility. We identified a likely mirtron, indicating that plants can also use spliced introns as a source of miRNAs. Our sequencing results revealed four TAS3 loci; these all contain dual miR390 sites of which only the 3? site is cleaved. We also found a miRNA-like long hairpin generating phased 21nt small RNAs, strongly expressed in developing grains and show that these small RNAs act in trans to cleave target mRNAs. Keywords: high throughput pyrosequencing, small RNA, microRNA, grain development, rice
Project description:Endogenous small RNAs, including microRNAs (miRNAs) and short-interfering RNAs (siRNAs), function as posttranscriptional or transcriptional regulators in plants. miRNA function is essential for normal development and therefore likely to be important in the growth of the rice grain. To investigate the likely roles of miRNAs in rice grain development we carried out deep sequencing of the small RNA populations of rice grains. A total of 96,091 (including 23,867 reads from vegetative tissues) and 5,379,724 small RNA sequences that are longer than 17nt were generated. Approximately 94% of these small RNAs were 20-24nt in length. The majority of the small RNAs were singletons, indicating that rice genome has a very complex small RNA population, which is harder to be saturated. From these smal RNA sequences we found representatives of all 20 conserved plant miRNA families and evidence for changes in expression of miRNAs during rice grain development. Using an approach based on the presence of the miRNA and miRNA* sequences, we identified 51 novel, non-conserved rice miRNA families expressed in grains with functionally diverse predicted target genes. miRNA-guided cleavage was confirmed for a number of targets genes including ones with roles in sugar signalling and restoration of cytoplasmic male sterility. We identified a likely mirtron, indicating that plants can also use spliced introns as a source of miRNAs. Our sequencing results revealed four TAS3 loci; these all contain dual miR390 sites of which only the 3? site is cleaved. We also found a miRNA-like long hairpin generating phased 21nt small RNAs, strongly expressed in developing grains and show that these small RNAs act in trans to cleave target mRNAs. Keywords: high throughput pyrosequencing, small RNA, microRNA, grain development, rice Small RNA populations of shoots and roots of 7 days old seedlings, and 1-5 and 6-10 days after fertilization grains were determined using high throughput sequencing technology. The abundance of known miRNAs were compared based on the number of sequence reads. To give a whole picture of the rice small RNA populations and to reflect un-biasly the sequencing results, small RNAs that are longer than 17nt no matter whether or not they matched with the rice genome were included in this submitted dataset. The unmatched sequences may be derived from un-sequenced regions or sequencing errors.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5M-bM-^@M-^Y rapid amplification of cDNA ends (RLM 5M-bM-^@M-^Y-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice. The degradome sequence of Young inflorescences from Oryza sativa L. ssp. indica (93-11) was sequenced
Project description:Purpose: The goal of our study is to compare two different ecotypes of Oryza sativa L., PHS-susceptible rice trait and PHS-resistant rice trait under three different maturation stages in rice seed embryo with profile of miRNA-seq. Methods: Oryza sativa. L miRNA profiles of two different ecotypes with 3 different maturation stages of rice seed embryo were generated by NGS, in duplicate, following Illumina NGS workflow. Results: We found the differentially expressed microRNAs between PHS-susceptible rice trait and PHS-resistant rice trait according to the three different seed maturation stages. Target transcripts of differentially expressed microRNAs have been predicted via psRNATarget web server, and a part of those target genes are likely to be regulated by microRNAs, affecting overall responses to heat stress and the regulation of seed dormancy during maturation. Conclusions: Our study represents the analysis of rice seed small RNAs, specifically microRNAs, under two different ecotypes, three different seed maturation stages in rice seed embryo. Our results show that microRNAs are involved in response to heat stress and the regulation of seed dormancy. This study will provide a foundation for understanding dynamics of seed dormancy during the seed development and overcoming pre-harvest sprouting.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:The small RNAs presented here were produced as a preliminary exploration of small RNAs in rice, and as such, various tissues and stress conditions were sampled. Small RNAs present in these samples were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682. The datasets contain Oryza sativa var Nipponbar endogenous small RNA sequences in the size range 18 to 34 nt. Plants were grown in a Conviron Environmental Chamber at high light intensity using both high pressure sodium and metal halide lamps for 10.5 hr at 28 degrees C and for 13.5 hr at 26 degrees C in the dark. RNA was extracted from rice tissues at various stages of development and under different abiotic and biotic stresses. The small RNAs presented here were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682.