Project description:Black cumin (Nigella sativa L.) is known to possess a wide variety of antimicrobial peptides belonging to different structural families. Three novel antimicrobial peptides have been isolated from black cumin seeds. Two of them were attributed as members of the non-specific lipid transfer proteins family and one - as a defensin. We have made an attempt of using proteomic approach for novel antimicrobial peptides search in N. sativa seeds as well. The use of well established approach that includes extraction and fractionation stages remains relevant even in case of novel peptides search because the lacking of N. sativa genome data. Novel peptides demonstrate a spectrum of antimicrobial activity against plant pathogenic organisms that may cause economically important crop diseases. These results obtained allow considering these molecules as candidates to be applied in "next-generation" biopesticides development for agriculture use.
Project description:To evaluate the roles of gene regulation in Oryza sativa leaf, dynamic profiles of transcriptome were investigated in Oryza sativa L. spp. indica with different treatments, the aerial tissues of one-month-old plants from four different areas (groups 1–4) were treated with 0, 40 mL of 25% azoxystrobin, 0.01 g of VdAL, or 40 mL of 25% azoxystrobin plus 0.01 g VdAL, respectively.
Project description:Nigella species are widely used to cure various ailments. Their health benefits, particularly from the seed oils, could be attributed to the presence of a variety of bioactive components. Roasting is a critical process that has historically been used to facilitate oil extraction and enhance flavor; it may also alter the chemical composition and biological properties of the Nigella seed. The aim of this study was to investigate the effect of the roasting process on the composition of the bioactive components and the biological activities of Nigella arvensis and Nigella sativa seed extracts. Our preliminary study showed that seeds roasted at 50 °C exhibited potent antimicrobial activities; therefore, this temperature was selected for roasting Nigella seeds. For extraction, raw and roasted seed samples were macerated in methanol. The antimicrobial activities against Streptococcus agalactiae, Streptococcus epidermidis, Streptococcus pyogenes, Candida albicans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Klebsiella oxytoca were determined by measuring the diameter of the zone of inhibition. The cell viability of extracts was tested in a colon carcinoma cell line, HCT-116, by using a microculture tetrazolium technique (MTT) assay. Amino acids were extracted and quantified using an automatic amino acid analyzer. Then, gas chromatography-mass spectrometry (GC-MS) analysis was performed to identify the chemical constituents and fatty acids. As a result, the extracts of raw and roasted seeds in both Nigella species showed strong inhibition against Klebsiella oxytoca, and the raw seed extract of N.arvensis demonstrated moderate inhibition against S. pyogenes. The findings of the MTT assay indicated that all the extracts significantly decreased cancer cell viability. Moreover, N. sativa species possessed higher contents of the measured amino acids, except tyrosine, cystine, and methionine. The GC-MS analysis of extracts showed the presence of 22 and 13 compounds in raw and roasted N. arvensis, respectively, and 9 and 11 compounds in raw and roasted N. sativa, respectively. However, heat treatment decreased the detectable components to 13 compounds in roasted N. arvensis and increased them in roasted N. sativa. These findings indicate that N. arvensis and N. sativa could be potential sources of anticancer and antimicrobials, where the bioactive compounds play a pivotal role as functional components.
Project description:Comparative transcriptome sequencing in leaf and root tissues of Control and Salt-treated Oryza sativa generated 52.2 and 17.29 million high-quality reads.
Project description:OBJECTIVE:Nigella sativa (N. sativa) has several pharmacological actions which include antioxidant, antidiabetic, anticancer, antitussive, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator. The purpose of this study is to measure the effectivity of N. sativa ethanol extract as anti-inflammation on peritoneal Wistar rat mast cells. The laboratory experiment was used to investigate the effectivity of N. sativa as an anti-inflammatory on mast cells. Six groups of mast cells were stimulated by C 48/80 to release histamine. Group 1 were without N. sativa, while group 2, 3, 4, 5, and 6 were given N. sativa with concentrations of 0.1 mg/ml, 0.2 mg/ml, 0.3 mg/ml, 0.4 mg/ml and 0.5 mg/ml, respectively. Histamine concentration was measured by high-performance liquid chromatography-fluorometry. RESULT:The study showed that N. sativa ethanol extract effectively inhibit histamine release from peritoneal Wistar rat mast cells proportionally to its concentration. N. sativa is effective as an anti-inflammation on mast cells by inhibition of histamine release and has no toxic effect on mast cell. N. sativa could be considered as a potential therapy for asthma therapy and prevention.