Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi. 6 different conditions were analyzed, each consisting of two biological replicates. These included Rhizopus microsporus ATCC52813 (sex +) growing alone with endosymbionts, R. microsporus ATCC52814 (sex -) growing alone with endosymbionts, ATCC 52813 growing alone without endosymbionts, ATCC52814 growing alone without endosymbionts, ATCC52813 and ATCC52814 growing together with endosymbionts (successfully mating), and ATCC52813 and ATCC52814 growing together without endosymbionts (failure to mate). In each condition, fungi were cultivated on half-strength PDA and plugs of mycelium were placed at the edge of the plate. After 6 days, approximately 2.5 cm of tissue were harvested from the center of the plate. Each biological replicate consists of 5 plates which were pooled prior to RNA extraction to ensure sufficient tissue was collected.
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi.
Project description:The cytokine interleukin-33 (IL-33) is an epithelial alarmin with critical roles in allergic inflammation and type 2 immunity. The project aims at the characterization of the direct cleavage of IL-33 by allergen proteases, resulting in its activation, and in the subsequent induction of type 2 cytokine production in group 2 innate lymphoid cells. The present dataset contains mass spectrometry analyses to map the cleavage sites for 9 distinct allergens proteases in the human IL-33 sequence.
Project description:Determination of the molecular mechanism of IL33 on glioma cells Since IL-33 is known to associate with chromatin and regulate transcriptional activity and that nuclear expression of IL-33 increases glioma progression, we determined Nuclear IL-33 regulates the expression and secretion of inflammatory cytokines in glioma cells. Using these parameters 340 genes were induced by the ectopic expression of IL-33 and an additional 377 genes were downregulated. Gene ontology terms over-represented in the genes induced by IL-33 include three major clusters that associate with cytokine activity and inflammation