Project description:The small RNAs presented here were produced as a preliminary exploration of small RNAs in rice, and as such, various tissues and stress conditions were sampled. Small RNAs present in these samples were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682. The datasets contain Oryza sativa var Nipponbar endogenous small RNA sequences in the size range 18 to 34 nt. Plants were grown in a Conviron Environmental Chamber at high light intensity using both high pressure sodium and metal halide lamps for 10.5 hr at 28 degrees C and for 13.5 hr at 26 degrees C in the dark. RNA was extracted from rice tissues at various stages of development and under different abiotic and biotic stresses. The small RNAs presented here were all mapped to the rice genome TIGR version 5. The total number of distinct mapped sequences are 12879 for Run 1 and 88508 for Run 2. The total number of sequence reads were respectively 70406 and 191682.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:Rice is one of the most important global food crops, and is also a model organism for cereal research 31 . Complete genome sequencing of rice, together with advances in transcriptomics and proteomics, has had a dramatic impact on plant growth and 5 breeding programs 32 . Genomic analysis of DNA methylation in rice has revealed methylation patterns associated with gene bodies and promoters, and the occurrence of high levels of DNA methylation in the centromeric domain 33 . A genome-wide investigation of acetylation in rice revealed that H3K9ac and H3K27ac are mainly enriched at transcription start sites associated with active transcription 34 . Furthermore, global proteome analysis has shown that phosphorylation and succinylation are involved in diverse cellular and metabolic processes 35, 36 . However, despite these considerable advances in our knowledge, additional large-scale analysis of the lysine acetylome in rice is expected to identify many more Kac sites and acetylated proteins in this improtant crop plant. In this study, affinity enrichment and high-resolution LC-MS/MS were used for large-scale analysis of the lysine acetylome in rice variety Nipponbare. In total, 1353 lysine acetylation sites were detected in 866 protein groups in rice seedlings. Proteomic analysis showed that Kac occurs in proteins involved in diverse biological processes with varied cellular functions and subcellular localization.
Project description:Identification of all expressed transcripts in a sequenced complex genome is technically challenging, but essential for systems biology and genome analysis. We used the transcriptional profiling technology called ‘massively parallel signature sequencing’ (MPSS) to develop a comprehensive expression atlas of rice (Oryza sativa cv Nipponbare). A total of 46,971,553 mRNA transcripts from 22 libraries, and 2,953,855 small RNAs from three libraries were sequenced. The data demonstrated widespread transcription throughout the genome, including expression for up to 25,500 annotated genes and antisense expression for nearly 9,000 annotated genes. An additional set of ~15,000 mRNA signatures mapped to unannotated genomic regions. The majority of the small RNA data represented lower abundance small-interfering RNAs (siRNAs) that match repetitive sequences, intergenic regions, and genes. Among these, numerous clusters of highly-regulated small RNAs were readily observed. We developed a genome browser (http://mpss.udel.edu/rice) for public access to the transcriptional profiling data for this important crop plant. Keywords: MPSS, mRNA, small RNA, transcriptome, rice
Project description:Cross-kingdom molecular exchange between hosts and interacting microbes is essential for the survival of both plants and their pathogens. Recent studies showed plants transfer their small RNAs (sRNAs) and massager RNAs (mRNAs) into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogen cells remains unknown. Here, we show that rice plants send defense proteins into the fungal pathogen Rhizoctonia solani via extracellular vesicles (EVs). These vesicles enrich host defense proteins and are taken up by the fungal cells. Reducing EV-mediated host protein transfer leads to increased disease susceptibility. Thus, plants send defense proteins via EVs into fungal pathogens to combat infection, providing a mechanism of protein exchange between plants and pathogens that helps reduce crop disease.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. Totally three sets of small RNAs, which were obtained under normal condition as well as salt and drought stress conditions
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.