Project description:Study goal is to disclose features of gene expressio profile of non-cancerous liver-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas and tumor-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas. Keywords: gene expression profile, non-cancerous liver-infiltrating lymphocytes, tumor-infiltrating lymphocytes, type C hepatitis, hepatocellular carcinoma Non-cancerous liver-infiltrating lymphocytes were obtained by laser capture microdissection from surgically resected liver tissues of 12 type C hepatitis patients with hepatocellular carcinoma. The mRNA was amplified and expression profile was comprehensively analyzed with reference RNA using oligo-DNA chip. Tumor-infiltrating lymphocytes were obtained by laser capture microdissection from surgically resected cancer tissues of 12 type C hepatitis patients with hepatocellular carcinoma. The mRNA was amplified and expression profile was comprehensively analyzed with reference RNA using oligo-DNA chip.
Project description:Study goal is to disclose features of gene expressio profile of non-cancerous liver-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas and tumor-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas. Keywords: gene expression profile, non-cancerous liver-infiltrating lymphocytes, tumor-infiltrating lymphocytes, type C hepatitis, hepatocellular carcinoma
Project description:Genome-wide DNA methylation profiling was performed in paired samples of non-cancerous liver tissue and the corresponding cancerous tissue obtained from patients with hepatitis virus-related hepatocellular carcinomas using the Illumina Infinium HumanMethylation450 Beadchip.
Project description:Metastatic uveal melanoma generally responds poorly to immunotherapy. The aim here was to sequence tumor-infiltrating lymphocytes from uveal melanoma metastases to study their phenotypes and T-cell receptor (TCR) clonotypes. We performed paired single-cell transcriptome and TCR sequencing using the 10x Genomics platform of IL2-expanded tumor-infiltrating lymphocytes from 7 liver and 1 subcutaneous metastasis.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.