Project description:Hypertension is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects that are largely unknown. In this study we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from pons and medulla oblongata of newborn spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats, a widely documented animal model of hypertension. We found 358 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 24 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to blood pressure regulation; however there are several genes differentially expressed in SHR not yet associated to hypertension or participating in blood pressure regulation. These constitute a rich resource for the identification and characterization of novel genes involved in hypertension development, or associated to phenotypical differences observed in SHR relative to WKI. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution in this pathology. Keywords: Gene expression profiling of cultured cells from brainstem of spontaneously hypertensive and normotensive Wistar Kyoto rats
Project description:We have used Affymetrix microarray-driven gene profiling to comprehensively describe the expression of mRNAs in the brainstem and hypothalamus in the adult male spontaneously hypertensive rat (SHR) as compared to its normotensive parental Wistar-Kyoto (WKY) strain.
Project description:We investigated morphometric structure and gene expression by microarray analysis in a small diameter artery, branch of the saphenous artery (a resistance artery), in representative models of renin-angiotensin system (RAS)-dependent and glucocorticoid hypertension, using the spontaneously hypertensive rat (SHR) and adrenocorticotropic hormone (ACTH)-induced hypertensive rat, respectively. Sixteen-week-old male Wistar-Kyoto (WKY) and age-matched spontaneously hypertensive rats (SHR) were used. Experiment Overall Design: There were 3 experimental groups: Group 1: 16-week male Wistar-Kyoto rats; Group 2: 16-week male Wistar-Kyoto rats treated with ACTH (0.1mg/kg/day) subcutaneously, for 4 weeks prior to sampling (i.e. during weeks 12-16 of life) ; Group3: 16-week male SHR (spontaneously hypertensive) rats. There were 3 replicate hybridizations in each experimental group. Due to the low yield of total RNA obtained from the arterial sections, each replicate was composed of RNA pooled from 2-3 different rats.
Project description:The brainstem, the core of the central nervous system, plays a vital role in controlling arterial blood pressure and its elevation of hypertension subtypes, especially essential hypertension. Integrative metabolic and proteomic profiling was performed on the brainstem samples of 11-week-old spontaneously hypertensive rats (SHRs) and age-matched normotensive Wistar rats, using hydrophilic interaction liquid chromatography-quadrupole/time-of-flight mass spectrometry (HILIC-Q/TOFMS) and nano-liquid chromatography-high-resolution-mass spectrometry (nano-LC-high-resolution-MS) combined with quantitative tandem mass tags (TMT).
Project description:Development of renal transcriptome in spontaneously hypertensive rats (SHR) as compared to normotensive wistar kyoto rats (WKY) from birth to old age.
Project description:We investigated morphometric structure and gene expression by microarray analysis in a small diameter artery, branch of the saphenous artery (a resistance artery), in representative models of renin-angiotensin system (RAS)-dependent and glucocorticoid hypertension, using the spontaneously hypertensive rat (SHR) and adrenocorticotropic hormone (ACTH)-induced hypertensive rat, respectively. Sixteen-week-old male Wistar-Kyoto (WKY) and age-matched spontaneously hypertensive rats (SHR) were used. Keywords: Comparison of global gene expression in resistance arteries of normotensive and genetically hypertensive rats and ACTH-treated rats.
Project description:In order to investigate the molecular basis of carotid body chemoreceptor sensitisation in the Spontaneously Hypertensive Rat (SHR) we have sequenced the transcriptomes of bilateral carotid body samples from aged-matched, male SHR and control Wistar-Kyoto rats.
Project description:Left ventricle gene expression was analyzed in three models of hypertension in order to clarify the molecular mechanisms associated with left ventricular hypertrophy. Transgenic heterozygous TGR(mRen2)27 rats, overexpressing the mouse renin gene, and their littermate negative controls, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY), and Lyon hypertensive rats (LH) and their normotensive controls (LL) were included in the study.