Project description:The Escherichia coli strain Nissle 1917 (EcN) is used as a probiotic for the treatment of certain gastrointestinal diseases in several European and non-European countries. In vitro studies showed EcN to efficiently inhibit the production of Shiga toxin (Stx) by Stx producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC). The occurrence of the latest EHEC serotype (O104:H4) responsible for the great outbreak in 2011 in Germany was due to the infection of an enteroaggregative E. coli by a Stx 2-encoding lambdoid phage turning this E. coli into a lysogenic and subsequently into a Stx producing strain. Since EHEC infected persons are not recommended to be treated with antibiotics, EcN might be an alternative medication. However, because a harmless E. coli strain might be converted into a Stx-producer after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN towards not only stx-phages but also against the lambda phage. This resistance was not based on the lack of or by mutated phage receptors. Rather the expression of certain genes (superinfection exclusion B (sieB) and a phage repressor (pr) gene) of a defective prophage of EcN was involved in the complete resistance of EcN to infection by the stx- and lambda phage. Obviously, EcN cannot be turned into a Stx producer. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.
Project description:Escherichia coli is the most well-studied bacterium and a common colonizer of the lower mammalian gastrointestinal tract. We report here the complete genome sequence of the original Escherichia coli isolate, strain NCTC86, which was described by Theodor Escherich, for whom the genus is named.
Project description:A food-borne outbreak of haemorrhagic colitis (HC) and HUS caused by E. coli O103:H25 occurred in Norway, 2006. The outbreak included 17 registered cases, of which 10 developed HUS. The aim of this study was to characterize two E. coli O103:H25 isolates from this outbreak. Only one of the isolates carry the stx2 gene (by PCR). Since they have the same typing profile by typing method MLVA, we expect the isolates to have identical gene content except from an Stx2-encoding phage. Therefore, we further investigate whether the Stx2-encoding phage has any impact on the gene expression. Keywords: mixed, gene expression, comparative genomic hybridization
Project description:We describe the design and evaluate the use of a high density oligonuclotide microarray covering seven sequenced E. coli genomes in addition to several sequenced E. coli plasmids, bacteriophages, pathogenicity islands and virulence genes. Its utility is demonstrated for comparative genomic profiling of two unsequenced strains, O175:H16 D1 and O157:H7 3538 as well as two well-known control strains, K-12 W3110 and O157:H7 EDL933. By using fluorescently labelled genomic DNA to query the microarrays and subsequently analyse common virulence genes and phage elements, and perform whole genome comparisons, we observed that O175:H16 D1 is a K-12 like strain and confirmed that its phi3538 phage element originated from the E. coli 3538 strain with which it shares a substantial proportion of phage elements. Moreover, a number of genes involved in DNA transfer and recombination was identified in both new strains providing a likely explanation for their capability to transfer phi3538 between them. Analyses of control samples demonstrated that results using our custom designed microarray were representative of the true biology, e.g. by confirming the presence of all known chromosomal phage elements as well as 98.8 and 97.7 percent of queried chromosomal genes for the two control strains. Finally, we demonstrate that use of spatial information, in terms of the physical chromosomal locations of probes, improves the analysis. Keywords: Genomic DNA hybridizations
Project description:These E. coli strains were grown with various signaling molecules and the expression profiles were determined. Keywords: addition of quorum and host hormone signals
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators, and the host responce after adsorption of the phage and the ghost.
Project description:A food-borne outbreak of haemorrhagic colitis (HC) and HUS caused by E. coli O103:H25 occurred in Norway, 2006. The outbreak included 17 registered cases, of which 10 developed HUS. The aim of this study was to characterize two E. coli O103:H25 isolates from this outbreak. Only one of the isolates carry the stx2 gene (by PCR). Since they have the same typing profile by typing method MLVA, we expect the isolates to have identical gene content except from an Stx2-encoding phage. Therefore, we further investigate whether the Stx2-encoding phage has any impact on the gene expression. Keywords: mixed, gene expression, comparative genomic hybridization Triplicate samples of mRNA from a test strain O157:H7 EDL933 and two outbreak strains - one Stx positive and one stx negative were co-hybridized with genomic DNA from the same strain. Triplicate samples of the Stx positive strain grown at acidic conditions was also co-hybridized with genomic DNA from the Stx positive strain. Genomic DNA for each strain is technical replicates only.
Project description:Here, we investigated the impact of Stx2 phage carriage on Escherichia coli (E. coli) K-12 MG1655 host gene expression. Using quantitative RNA-seq analysis, we compared the transcriptome of naïve MG1655 and the lysogens carrying the Stx2 phage of the 2011 E. coli O104:H4 outbreak strain or of the E. coli O157:H7 strain PA8, which share high degree of sequence similarity.