Project description:Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy and understanding disease progression. Redox factor-1 (Ref-1), a redox signaling protein, regulates the DNA binding activity of several transcription factors, including HIF-1. The conversion of HIF-1 from an oxidized to reduced state leads to enhancement of its DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia.Results: We also integrated the scRNA data analysis with the proteomic analysis and found that the differentially expressed genes and pathways identified from the scRNA-seq data are highly consistent to the significant proteins observed in the proteomics data, especially for the upregulated cell cycle and transcription pathways and downregulated metabolic, apoptosis and signaling pathways under hypoxia. Conclusion: The scRNA-seq and proteomics data consistently demonstrated down-regulated central metabolism pathways in APE1/Ref-1 knockdown vs scrambled control under both normoxia and hypoxia conditions. Experimental Methods: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model. Matched samples were also collected for bulk proteomic analysis of the four conditions. scRNA-seq data was validated using proteomics and qRT-PCR. Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays and qRT-PCR. Results: We also integrated the scRNA data analysis with the proteomic analysis and found that the differentially expressed genes and pathways identified from the scRNA-seq data are highly consistent to the significant proteins observed in the proteomics data, especially for the upregulated cell cycle and transcription pathways and downregulated metabolic, apoptosis and signaling pathways under hypoxia. Conclusion: The scRNA-seq and proteomics data consistently demonstrated down-regulated central metabolism pathways in APE1/Ref-1 knockdown vs scrambled control under both normoxia and hypoxia conditions.
Project description:We evaluated blood samples from 6 patients with metastatic melanoma treated with anti-LAG3+anti-PD1 (160+480 mg) in a phase I trial (NCT01968109) using single-cell RNA and T cell receptor (TCR) sequencing (scRNA+TCRαβ-seq, 10X 5') combined with other multiomics profiling (flow, cytokine, TCRb-seq) from a larger cohort of 40 patients. This data set include three time points, including baseline, 1 month, and 3 month. The sorting is CD45+.
Project description:Energy metabolism and extracellular matrix function are closely connected to orchestrate and maintain tissue organization, but the crosstalk is poorly understood. Here, we used scRNA-seq analysis to uncover the importance of respiration for extracellular matrix homeostasis in mature cartilage. Genetic inhibition of respiration in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage showing disorganized chondrocytes and increased deposition of extracellular matrix material. scRNA-seq analysis identified a cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of extracellular matrix-related genes in nonarticular chondrocyte clusters. These changes were associated with alterations in extracellular matrix composition, a shift in the collagen/non-collagen protein content and an increase of collagen crosslinking and ECM stiffness. The results demonstrate, based on findings of the scRNA-seq analysis, that respiration is a key factor contributing to ECM integrity and mechanostability in cartilage and presumably also in many other tissues.
Project description:Phase 1 trial of individualized mRNA vaccine for Pancreatic Cancer. We used scRNA-seq to characterize the phenotype of vaccine associated T cells.
Project description:The aim of the study is the assessment of diagnostic efficacy of extracorporeal diagnostic reagent pancreatic cancer diagnosis kit whose principle is the measurement of gene expression affected in pancreatic cancer human patients. Clinical trial registration number: UMIN000020758.
Project description:The aim of this experiment was to generate a scRNA-seq dataset that would allow us to follow the emergence of the adult midgut progenitor cells within the embryonic midgut cell population.
Project description:In the clinical trial, we evaluated the immunological efficacy of the vaccination of GBM6-AD, a tumor-cell lysate, assisted with poly-ICLC in low grade glioma. To characterize the gene expression, subset proportions, and T-cell receptor (TCR) profile of T-cells in PBMCs, we analyzed pre- and post-neoadjuvant vaccinated PBMCs from four immunological responders (103-018, -26, -29, -51), using droplet-based 5’ single-cell RNA-sequencing (scRNA-seq) and single-cell T-cell receptor-sequencing (scTCR-seq) with 10x GENOMICS platform. Further, we analyzed the gene expression profiles in resected tumor specimens by bulk RNA-seq analyses.