Project description:Peripheral B cell selection of autoreactive B cells is crucial for preventing autoimmunity. In this study, we identify that a significant proportion of antiphospholipid (aPL) B cells present in the naive compartment, exhibit polyreactivity and belong to the natural repertoire. We used scRNA Seq to follow B cells with aPL features throughout their development from naïve B cells to plasma cells in patients with PAPS.
Project description:The present gene expression array study of comparative gene profile in monocytes from patients with primary Antiphospholipid Syndrome, Systemic Lupus Erythematosus and Lupus with Antiphospholipid Syndrome demonstrates that the gene expression profiling allows the segregation of these highly related autoimmune diseases, with specific signatures explaining the pro-atherosclerotic, pro-thrombotic and inflammatory changes.
Project description:Objective: Pathogenesis of antiphospholipid syndrome (APS) isn't fully elucidated. We aimed to identify gene signatures characterizing thrombotic primary APS (thrPAPS) and subgroups at high risk for worse outcomes. Methods: We performed whole blood next-generation RNA-sequencing in 62 patients with thrPAPS and 29 age-/sex-matched healthy controls (HCs), followed by differential gene expression analysis (DGEA) and enrichment analysis. We trained models on transcriptomics data using machine learning. Results: DGEA of 12.306 genes revealed 34 deregulated genes in thrPAPS versus HCs; 33 were upregulated by at least 2-fold, and 14/33 were type I and II interferon-regulated genes (IRGs) as determined by interferome database. Machine learning applied to deregulated genes returned 79% accuracy to discriminate thrPAPS from HCs, which increased to 82% when only the most informative IRGs were analyzed. Comparison of thrPAPS subgroups versus HCs showed an increased presence of IRGs among upregulated genes in venous thrombosis (21/23, 91%), triple-antiphospholipid antibody (aPL) positive (30/50, 60%), and recurrent thrombosis (19/42, 45%) subgroups. Enrichment analysis of upregulated genes in triple-aPL positive patients revealed terms related to 'type I interferon signaling pathway' and 'innate immune response'. DGEA among thrPAPS subgroups revealed upregulated genes, including IRGs, in patients with venous versus arterial thrombosis (n = 11, 9 IRGs), triple-aPL versus non-triple aPL (n = 10, 9 IRGs), and recurrent versus non-recurrent thrombosis (n = 10, 3 IRGs). Conclusion: Upregulated IRGs may better discriminate thrPAPS from HCs than all deregulated genes in peripheral blood. Taken together with DGEA data, IRGs are highly expressed in thrPAPS and high-risk subgroups of triple-aPL and recurrent thrombosis, with potential treatment implications.
Project description:Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thromboembolic events and pregnancy loss. We sought to characterize the DNA methylation profile of primary APS in comparison to healthy controls and individuals with SLE.
Project description:The present gene expression array study of comparative gene profile in monocytes from patients with primary Antiphospholipid Syndrome, Systemic Lupus Erythematosus and Lupus with Antiphospholipid Syndrome demonstrates that the gene expression profiling allows the segregation of these highly related autoimmune diseases, with specific signatures explaining the pro-atherosclerotic, pro-thrombotic and inflammatory changes. One hundred and twenty six patients, forty one with APS, thirty one with SAPS and fifty four with SLE, as well as sixty one healthy donors were included in the study. Monocytes were purified from peripheral blood samples (non-monocytes depleting kit, Miltenyi Biotech, Bergisch Galdbach, Germany). Total RNA from monocytes was extracted using TRIzol reagent. RNA quality control was performed in a 2100 Bioanalyzer. Complementary RNAs from 3 APS patients, 3 SAPS patients, 3 SLE patients, and 3 healthy donors were prepared for hybridization in an Agilent G4112F platform (Whole human Genome microarray 44K) using the One-color gene expression system (Agilent technologies).
Project description:Antiphospholipid syndrome (APS) is an autoimmune thrombophillia characterized by recurrent thrombotic events and/or pregnancy morbidity in the presence of antiphospholipid antibodies detected either as anti-cardiolipin, anti-β2 Glycoprotein I (anti-β2GPI) or Lupus anticoagulant (LA). Endothelial deregulation characterizes the syndrome. To address the gene expression changes occurring in the endothelial cells in the context of APS, we performed transcriptome analysis of Human Umbilical Vein Endothelial cells (HUVECs) stimulated with anti-β2GPI-β2GPI complexes.
Project description:explore the transcriptome profiles of PBMCs derived from individuals with Primary antiphospholipid syndrome (PAPS) and compared<br>them with those of healthy individuals. Also compare the transcriptome profiles of the closely related Systemic lupus Erythematosus autoimmune disorder with the same profiles from healthy individuals
Project description:To discover miRNAs implicate in PAPS pathogenesis, we isolated sEVs from plasma of PAPS patients, aPL patients (patients with positive antiphospholipid antibodies without thrombotic or obstretic complications) and control. Then, we extracted RNA total and we performed miRNA-sequencing.