Project description:Klebsiella pneumoniae poses a significant global health threat primarily attributable to its pronounced resistance. Here, we report an in vitro acquired resistance analyses of K. pneumoniae to the combination of amikacin and polymyxin B. We found some differentially expressed genes associated with the resistome of K. pneumoniae. The main differences were found in the genes aphA, asmA, phoP, and in the arn operon. Once these genes are related to modification in lipopolysaccharides, aminoglycosides and in the membrane structure, the mechanisms associated with them can justify the resistance acquisition to amikacin and polymyxin b.
Project description:With increasingly concerning strains of antimicrobial resistant strains of the commensal, gram-negative bacteria Klebsiella pneumoniae emerging, there is a pressing need to better understand the pathogen and mechanisms behind its pathogenicity. This study investigated the regulatory mechanisms in strain MGH 78578 of two major sigma factors, the house-keeping sigma factor RpoD, and the general stress response sigma factor RpoS, in mid-exponential and early stationary phase using chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) followed by deep sequencing. Combining ChIP-exo and transcriptome analysis allowed for the determination of sigma factor binding sites, binding motifs, and genes included in the phase-specific sigmulons. The number of genes included in the RpoS sigmulon was greater than in the RpoD sigmulon, with 1,833 and 1,690 genes included, respectively; however, a majority of sigmulon genes were found in all phase-specific sigmulons. Focussing on pathogenicity genes, 20 antimicrobial resistance genes (ARGs) and 155 virulence genes, only two ARGs were found exclusively in one phase-specific sigmulon, an oxacillin-hydrolysing class D beta-lactamase and chloramphenicol efflux MFS transporter CmlA5, which were found in the RpoD sigmulon in early stationary phase. Notably, six unnamed proteins that are or pertain to fimbrial proteins were found uniquely in the RpoS sigmulon in early stationary phase. From this, it can be hypothesised that early stationary phase might be an important phase for pathogenicity gene regulation. While there is little conservation in RpoS sigmulons from strain to strain, RpoS appears to have a consistent overarching role across strains, including a role as a regulator of pathogenicity genes.
Project description:Klebsiella pneumoniae poses significant threat to global health. Detailed investigation to the nature of its interaction to human epithelial cells is still lacking. OmpR is an important regulator to the expression of major outer membrane protein genes, ompF and ompC. Here, we exploited the recently described dual RNA-seq to simultaneously measure genome-wide expression of host and pathogen two hours into infection. By comparing OmpR deleted strain to its wildtype parental strain, we, simultaneously, reconstructed OmpR regulon and deletion effect to host response.
Project description:Hypervirulent K. pneumoniae (hvKp) is an evolving pathotype that is more virulent than classical K. pneumoniae (cKp). hvKp usually infects individuals from the community, who are often healthy. Infections are more common in the Asian Pacific Rim but are occurring globally. hvKp infection frequently presents at multiple sites or subsequently metastatically spreads, often requiring source control. hvKp has an increased ability to cause central nervous system infection and endophthalmitis, which require rapid recognition and site-specific treatment. The genetic factors that confer hvKp's hypervirulent phenotype are present on a large virulence plasmid and perhaps integrative conjugal elements. Increased capsule production and aerobactin production are established hvKp-specific virulence factors. Similar to cKp, hvKp strains are becoming increasingly resistant to antimicrobials via acquisition of mobile elements carrying resistance determinants, and new hvKp strains emerge when extensively drug-resistant cKp strains acquire hvKp-specific virulence determinants, resulting in nosocomial infection. Presently, clinical laboratories are unable to differentiate cKp from hvKp, but recently, several biomarkers and quantitative siderophore production have been shown to accurately predict hvKp strains, which could lead to the development of a diagnostic test for use by clinical laboratories for optimal patient care and for use in epidemiologic surveillance and research studies.