Project description:Hypervirulent K. pneumoniae (hvKp) is an evolving pathotype that is more virulent than classical K. pneumoniae (cKp). hvKp usually infects individuals from the community, who are often healthy. Infections are more common in the Asian Pacific Rim but are occurring globally. hvKp infection frequently presents at multiple sites or subsequently metastatically spreads, often requiring source control. hvKp has an increased ability to cause central nervous system infection and endophthalmitis, which require rapid recognition and site-specific treatment. The genetic factors that confer hvKp's hypervirulent phenotype are present on a large virulence plasmid and perhaps integrative conjugal elements. Increased capsule production and aerobactin production are established hvKp-specific virulence factors. Similar to cKp, hvKp strains are becoming increasingly resistant to antimicrobials via acquisition of mobile elements carrying resistance determinants, and new hvKp strains emerge when extensively drug-resistant cKp strains acquire hvKp-specific virulence determinants, resulting in nosocomial infection. Presently, clinical laboratories are unable to differentiate cKp from hvKp, but recently, several biomarkers and quantitative siderophore production have been shown to accurately predict hvKp strains, which could lead to the development of a diagnostic test for use by clinical laboratories for optimal patient care and for use in epidemiologic surveillance and research studies.
Project description:With increasingly concerning strains of antimicrobial resistant strains of the commensal, gram-negative bacteria Klebsiella pneumoniae emerging, there is a pressing need to better understand the pathogen and mechanisms behind its pathogenicity. This study investigated the regulatory mechanisms in strain MGH 78578 of two major sigma factors, the house-keeping sigma factor RpoD, and the general stress response sigma factor RpoS, in mid-exponential and early stationary phase using chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) followed by deep sequencing. Combining ChIP-exo and transcriptome analysis allowed for the determination of sigma factor binding sites, binding motifs, and genes included in the phase-specific sigmulons. The number of genes included in the RpoS sigmulon was greater than in the RpoD sigmulon, with 1,833 and 1,690 genes included, respectively; however, a majority of sigmulon genes were found in all phase-specific sigmulons. Focussing on pathogenicity genes, 20 antimicrobial resistance genes (ARGs) and 155 virulence genes, only two ARGs were found exclusively in one phase-specific sigmulon, an oxacillin-hydrolysing class D beta-lactamase and chloramphenicol efflux MFS transporter CmlA5, which were found in the RpoD sigmulon in early stationary phase. Notably, six unnamed proteins that are or pertain to fimbrial proteins were found uniquely in the RpoS sigmulon in early stationary phase. From this, it can be hypothesised that early stationary phase might be an important phase for pathogenicity gene regulation. While there is little conservation in RpoS sigmulons from strain to strain, RpoS appears to have a consistent overarching role across strains, including a role as a regulator of pathogenicity genes.
Project description:Klebsiella pneumoniae is a major threat to public health, causing significant morbidity and mortality worldwide. The emergence of highly drug-resistant strains is particularly concerning. There has been a recognition and division of Klebsiella pneumoniae into three distinct phylogenetic groups: Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. K. variicola and K. quasipneumoniae have often been described as opportunistic pathogens that have less virulence in humans than K. pneumoniae does. We recently sequenced the genomes of 1,777 extended-spectrum-beta-lactamase (ESBL)-producing K. pneumoniae isolates recovered from human infections and discovered that 28 strains were phylogenetically related to K. variicola and K. quasipneumoniae. Whole-genome sequencing of 95 additional non-ESBL-producing K. pneumoniae isolates recovered from patients found 12 K. quasipneumoniae strains. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis initially identified all patient isolates as K. pneumoniae, suggesting a potential pitfall in conventional clinical microbiology laboratory identification methods. Whole-genome sequence analysis revealed extensive sharing of core gene content and plasmid replicons among the Klebsiella species. For the first time, strains of both K. variicola and K. quasipneumoniae were found to carry the Klebsiella pneumoniae carbapenemase (KPC) gene, while another K. variicola strain was found to carry the New Delhi metallo-beta-lactamase 1 (NDM-1) gene. K. variicola and K. quasipneumoniae infections were not less virulent than K. pneumoniae infections, as assessed by in-hospital mortality and infection type. We also discovered evidence of homologous recombination in one K. variicola strain, as well as one strain from a novel Klebsiella species, which challenge the current understanding of interrelationships between clades of Klebsiella. IMPORTANCEKlebsiella pneumoniae is a serious human pathogen associated with resistance to multiple antibiotics and high mortality. K. variicola and K. quasipneumoniae are closely related organisms that are generally considered to be less-virulent opportunistic pathogens. We used a large, comprehensive, population-based strain collection and whole-genome sequencing to investigate infections caused by these organisms in our hospital system. We discovered that K. variicola and K. quasipneumoniae isolates are often misidentified as K. pneumoniae by routine clinical microbiology diagnostics and frequently cause severe life-threatening infections similar to K. pneumoniae. The presence of KPC in K. variicola and K. quasipneumoniae strains as well as NDM-1 metallo-beta-lactamase in one K. variicola strain is particularly concerning because these genes confer resistance to many different beta-lactam antibiotics. The sharing of plasmids, as well as evidence of homologous recombination, between these three species of Klebsiella is cause for additional concern.