Project description:Late blight, caused by the oomycete Phytophthora infestans, is one of the most damaging potato diseases. Genetic resistance is one of the most effective means to control the destruction caused by this pathogen. Transgenic potato lines harboring a resistance gene, RB, confer broad-spectrum, rate-reducing late blight resistance. A microarray approach was used to understand what genes are manipulated in the potato background after the addition of the RB gene that contribute to the late blight resistant phenotype. Keywords: Time course, disease state analysis
Project description:Late blight, caused by the oomycete Phytophthora infestans, is one of the most damaging potato diseases. Genetic resistance is one of the most effective means to control the destruction caused by this pathogen. Transgenic potato lines harboring a resistance gene, RB, confer broad-spectrum, rate-reducing late blight resistance. A microarray approach was used to understand what genes are manipulated in the potato background after the addition of the RB gene that contribute to the late blight resistant phenotype. Keywords: Time course, disease state analysis CRD (3x2x2) Split-Split Plot: 3 sampling time points after inoculation (2, 5, 10 hours), Two genotypes (Katahdin with and without the RB gene), Inoculation with P. infestans or mock inoculation with water. 48 arrays were hybridized in total; 12 in each biological replicate. Each genotype with the mock and late blight inoculated samples was hybridized on two arrays using a dye-swap procedure. Each genotype had a total of 6 arrays across the three sampling time points.
Project description:Potato Late blight is one the most important crop diseases worldwide. Even though potato has been studied for many years, the potato disease late blight still has a huge negative effect on the potato production. A total of three commercially available field potato cultivars of different resistance to late blight infection: Kuras (moderate), Sarpo Mira (highly resistant) and Bintje (very suseptable) under controlled green house growing conditions innoculated with a diversity of P. infestans populations. We used label-free quantitative proteomics to investigate the infection with P. infestans in a time-course study over 258 hours. Several key issues limits proteome analysis of potato leaf tissue4–6. Firstly, the immense complexity of the plant proteome which is further complicated by the presence of highly abundant proteins, such as ribulose bisphosphate carboxylase/oxygenase (RuBisCO). Secondly, plant leaf and potato in particular contain abundant levels amounts of phenols and polyphenols which hinder or, unless precautions are taken, completely prevent a successful protein extraction.
Project description:Potato leaves From Solanum tuberosum var. Kennebec will be wounded and oral secretions from 4th instar CPB will be isolated and added to the plants as described by Kruzmane et al (2002, Physiol. Plantarum 115:577-584). The leaf from the 6th node of the potato plant will be wounded or wounded and treated with oral secretions from CPB. Unwounded leaves from node 1-5 of the wounded and wounded plus oral secretions plants will be harvested as systemic material. The leaves will be harvested after 4 hrs and RNA will be isolated. 4 hrs was chosen because this represents a time when early and late induced genes should both be present. In addition, the leaf from the 6th node will be subjected to feeding by CPB that have been raised on potato leaves and starved for 16 hrs immediately prior to infestation. Insects will be allowed to feed for 1 hr and the leaves will be harvested after 3 additional hrs. An additional set of plants will be used to infest the leaf on the 6th node for 4 hrs. Leaves from the 6th node will be collected from uninfested plants after 4 hrs as a control. Three sets of 6-12 plants will be used for each sample. Keywords: Direct comparison
2007-09-01 | GSE8255 | GEO
Project description:A KASP marker for the Potato Late Blight Resistance Gene RB/Rpi-blb1
Project description:Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies