Project description:Drosophila X chromosomes are subject to dosage compensation in males and are known to have a specialized chromatin structure in the male soma. We are interested in how specific chromatin structure change contributes to X chromosome hyperactivity and dosage compensation. We have conducted a global analysis of localize two dosage compensation complex dependent histone marks H4AcK16 and H3PS10 and one dosage compensation complex independent histone mark H3diMeK4 in the genome, especially on X chromosome by ChIP-chip approach in both male and female adult flies. We also probed general genomewide chromatin structure by deep DNA sequencing of sheared ChIP input DNA from male and female adult flies. Chromatin immunoprecipitations were performed in 5-7 day aged adult male and female flies with three histone modification antibodies. ChIP enriched DNA and input DNA was labeled by Cy3 or Cy5 dye separately and hybridized simultaneously to the Drosophila FlyGEM arrays. At least two biological replicates were performed for each antibody and sex. DNA-seq (NIDDK-Drosophila-Illumina-DNASeq) were performed on ChIP-input sheared DNA to check the general chromatin structure of different chromosome.
Project description:Drosophila X chromosomes are subject to dosage compensation in males and are known to have a specialized chromatin structure in the male soma. We are interested in how specific chromatin structure change contributes to X chromosome hyperactivity and dosage compensation. We have conducted a global analysis of localize two dosage compensation complex dependent histone marks H4AcK16 and H3PS10 and one dosage compensation complex independent histone mark H3diMeK4 in the genome, especially on X chromosome by ChIP-chip approach in both male and female adult flies. We also probed general genomewide chromatin structure by deep DNA sequencing of sheared ChIP input DNA from male and female adult flies.
Project description:Duplication of eukaryotic genomes during S phase is coordinated in space and time. In order to identify zones of initiation and cell-type as well as gender-specific plasticity of DNA replication, we profiled replication timing, histone acetylation and transcription throughout the Drosophila genome. We observed two waves of replication initiation with many distinct zones firing in early and multiple, less defined peaks at the end of S phase, suggesting that initiation becomes more promiscuous at the end of S phase. A comparison of different cell types revealed widespread plasticity of replication timing on autosomes. Most occur in large regions but only half coincide with local differences in transcription. In contrast to confined autosomal differences, a global shift in replication timing occurs throughout the single male X chromosome. Unlike in females, the dosage compensated X chromosome replicates almost exclusively early. This difference occurs at sites which are not transcriptionally hyperactivated, but show increased acetylation of lysine 16 of histone H4. This suggests a transcription-independent, yet chromosome-wide process related to chromatin. Importantly, H4K16ac is also enriched at initiation zones as well as early replicating regions on autosomes during S phase. Together, our data reveal novel organizational principles of DNA replication of the Drosophila genome and imply chromatin structure as a determinant of replication timing locally and chromosome-wide. Keywords: cell type comparison, chip-chip, replication timing
Project description:We report the application of different chromatin profiling techniques applied to cell-type specific nuclei obtained with a nuclei immuno-enrichment protocol described in this manuscript, referred as NEI protocol. By optimizing these methods, we generated genome-wide datasets associated with the nuclear RNA transcriptome, chromatin accessibility, and distribution of histone H3 and two H3 two lysine tri-methylation marks, H3K4me3 and H3K36me3 respectively. This study provides a framework for the application of different aspects of chromatin biology using nuclei derived from specific cell types in Drosophila. Further, it demonstrates the low input requirements necessary for these chromatin studies.
Project description:Nucleosomal chromatin persists in the mature sperm of Drosophila melanogaster. Paternal epigenetic marks of repression and active transcription are found within many genes essential for embryogenesis. These marks are delivered at fertilization and are subsequently maintained in the early embryo.