Project description:Background: Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results: We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion: Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.
Project description:Pseudomonas aeruginosa (P. aeruginosa) lung infection is a significant cause of mortality in patients with cystic fibrosis (CF). Most CF patients acquire unique P. aeruginosa strains from the environment; however clonal strains have been identified in CF communities in several countries. Two clonal strains infect 10% to 40% of patients in three CF clinics in mainland eastern Australia. The expression profiles of four planktonically-grown isolates of one Australian clonal strain (AES-1), and four non–clonal CF P. aeruginosa isolates were compared to each other and to the reference strain PAO1 using the Affymetrix P. aeruginosa PAO1 genome array, to gain insight into properties mediating the enhanced infectivity of AES-1. The isolates were subsequently grown as 3-day old biofilms and similarly extracted for RNA and compared as above. Data analysis was carried out using BIOCONDUCTOR software. Keywords: Comparative strain hybridization
Project description:Pseudomonas aeruginosa (P. aeruginosa) lung infection is a significant cause of mortality in patients with cystic fibrosis (CF). Most CF patients acquire unique P. aeruginosa strains from the environment; however clonal strains have been identified in CF communities in several countries. Two clonal strains infect 10% to 40% of patients in three CF clinics in mainland eastern Australia. The expression profiles of four planktonically-grown isolates of one Australian clonal strain (AES-2), and four non–clonal CF P. aeruginosa isolates were compared to each other and to the reference strain PAO1 using the Affymetrix P. aeruginosa PAO1 genome array, to gain insight into properties mediating the enhanced infectivity of AES-1. The isolates were subsequently grown as 3-day old biofilms and similarly extracted for RNA and compared as above. Data analysis was carried out using BIOCONDUCTOR software. Keywords: Comparative strain hybridization
Project description:The chlorinated ethene-respiring bacteria of the genus Dehalococcoides are important for bioremediation. A microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus was designed with 4305 probe sets to target 98.6% of all genes from strains 195, CBDB1, BAV1, and VS. The microarrays were validated with genomic DNA (gDNA) of strains 195 and BAV1 and satisfactory analytical reproducibility, quantitative response and gene detection accuracy were obtained. These microarrays were applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2. Strains ANAS1 and ANAS2 can both couple the reduction of TCE, cDCE and 1,1-DCE but not PCE and tDCE with growth while only strain ANAS2 couples VC reduction to growth. Analysis of the respective gDNA using the microarrays showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements (IEs) or high plasticity regions (HPRs). Similar results to the combined isolates were obtained when gDNA of ANAS, the enrichment culture from which the two Dehalococcoides isolates originated, was applied to the microarrays. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny appears to be driven by the presence of distinct reductive dehalogenase (RDase)-encoding genes with characterized chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Genes encoding central metabolic functions of strain 195 were all detected in strains ANAS1 and ANAS2, while interestingly, the tryptophan operon of these strains is similar to that of strain VS. Overall, the microarrays are a valuable high-throughput tool for comparative genomics of un-sequenced Dehalococcoides-containing samples.
Project description:Background Bordetella pertussis is a Gram-negative bacterium that infects the human respiratory tract and causes pertussis or whooping cough. The disease has resurged in many countries including Finland where the whole-cell pertussis vaccine has been used for more than 50 years. Antigenic divergence has been observed between vaccine strains and clinical isolates in Finland. To better understand genome evolution in B. pertussis circulating in the immunized population, we developed an oligonucleotide-based microarray for comparative genomic analysis of Finnish strains isolated during the period of 50 years. Methodology/Principal Findings The microarray consisted of 3,582 oligonucleotides (70-mer) and covered 94% of the genome of Tohama I, the strain of which the genome has been sequenced [21]. Twenty isolates from 1953 to 2004 were studied together with two Finnish vaccine strains and two international reference strains. The isolates were selected according to their characteristics, e.g. the year and place of isolation and pulsed-field gel electrophoresis profiles. Genomic DNA of the tested strains, along with reference DNA of Tohama I strain, was labelled and hybridized. The absence of genes as established with microarrays, was confirmed by PCR. Compared to the Tohama I strain, Finnish isolates lost 7 (8.6 kb) to 49 (55.3 kb) genes, clustered in one to four distinct loci. The number of lost genes increased with time, and one third of lost genes had functions related to ion transport, metabolism, or energy production and conversion. All four loci of lost genes were flanked by the insertion sequence element IS481. Conclusion/Significance Our results showed that the progressive gene loss occurred in Finnish B. pertussis strains isolated during a period of 50 years and confirmed that B. pertussis is dynamic and is continuously evolving, suggesting that the bacterium may use gene loss as one strategy to adapt to highly immunized populations. Keywords: comparetive genomic hybridisation
Project description:Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, are known to exhibit diverse phenotypic traits, suggesting significant intraspecies genetic heterogeneity. Using whole-genome Bp microarrays, we experimentally mapped patterns of large-scale genomic variation in 93 South East Asian clinical, environmental, and animal Bp isolates. 14% of the reference Bp K96243 genome was variably present across the strain panel, more than double previous estimates, and both hypothetical proteins and paralogous gene pairs (PGPs) were significantly over-represented in the set of strain-variable genes. Examining patterns of PGP retention and loss, we successfully sub-categorized the PGPs into non-redundant, functionally biased, and completely redundant classes. We then identified 20 novel regions (“islands”) variably present between strains previously missed by computational analysis. Three of these novel islands contained lipopolysaccharide (LPS) biosynthesis genes, and strains lacking one such LPS island demonstrated reduced virulence in mouse infection assays. Clinical isolates associated with human melioidosis were strongly associated with the presence of specific genomic islands, but a common set of virulence-related genes was present in all strains. Our results suggest that most Bp strains possess a core virulence machinery capable of causing disease, but accessory functions provided by mobile elements may predispose distinct host species and ecological niches to specific individual strains. This hierarchical model of Bp virulence reconciles previous conflicting studies comparing Bp environmental and clinical isolates, and suggests novel molecular strategies for disease surveillance and outbreak detection efforts in melioidosis. Keywords: aCGH of 93 Bp strains
Project description:Transcriptional profiling of Lactobacillus brevis UCCLBBS124 and UCCLBBS449 comparing control strain grown in MRS broth with strains growing in different stress conditons (5 % EtOH, pH4 or 30 ppm iso-a-acids).This study aimed to evaluate how certain Lb. brevis isolates are adapted so as to allow them to survive and grow in beer.