Project description:Bovine respiratory epithelial cells have different susceptibility to bovine
respiratory syncytial virus infection. The cells derived from the lower
respiratory tract were significantly more susceptible to the virus than those
derived from the upper respiratory tract. Pre-infection with virus of lower
respiratory tract with increased adherence of P. multocida; this was not the
case for upper tract. However, the molecular mechanisms of enhanced
bacterial adherence are not completely understood. To investigate whether
virus infection regulates the cellular adherence receptor on bovine trachea-,
bronchus- and lung-epithelial cells, we performed proteomic analyses.
Project description:Diagnosis of acute respiratory viral infection is currently based on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with viral respiratory infection represents a novel means of infection diagnosis. We used microarrays to capture peripheral blood gene expression at baseline and time of peak symptoms in healthy volunteers infected intranasally with influenza A H3N2, respiratory syncytial virus or rhinovirus. We determined groups of coexpressed genes that accurately classified symptomatic versus asymptomatic individuals. We experimentally inoculated healthy volunteers with intranasal influenza, respiratory syncytial virus or rhinovirus. Symptoms were documented and peripheral blood samples drawn into PAXgene tubes for RNA isolation.
Project description:In this dataset, we identify microRNAs and other ncRNAs in neuronal (SHSY5Y) cells following a 12h or 24h infection with Respiratory Syncytial Virus (RSV) or Measles virus (MeV) relative to mock treated neuronal cells
Project description:We report the analysis of nasal curettage cells by RNAseq collected at pre-symptomatic timepoints in healthy adults experimentally challenged with respiratory syncytial virus (RSV). Following inoculation, 57% of participants developed PCR-confirmed infection. Prior to viral challenge, 80 differentially expressed genes were identified that associated with susceptibility to symptomatic infection. At day 3, 87 differentially expressed genes were associated with protection. Thus, we showed that the nasal mucosa at the time of virus exposure and during the incubation phase correlate with susceptibiltiy and protection from respiratory viral infection.
2020-09-01 | GSE155237 | GEO
Project description:The human nasopharynx microbiome of infants with respiratory syncytial virus infection
Project description:Stimulation of unmyelinated C-fibers is able to initiate host responses. In this study, we established the model of C fiber degenerated (KPCF) mice. KPCF mice were given respiratory syncytial virus (RSV) infection. We aimed to figure out the role of C fibers in RSV infection.
Project description:Diagnosis of acute respiratory viral infection is currentlybased on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with viral respiratory infection represents a novel means of infection diagnosis. We used microarrays to capture peripheral blood gene expression at baseline and time of peak symptoms in healthy volunteers infected intranasally with influenza A H3N2, respiratory syncytial virus or rhinovirus. We determined groups of coexpressed genes that accurately classified symptomatic versus asymptomatic individuals.
Project description:Proteomic data from uninfected and human respiratory syncytial virus (RSV) infected A549 cells (24h post infection; four biological replicate sets). Data is related to the fractionation-free workflow described in Dave et al. (2014) (PMID: 25106423). Data is processed using MaxQuant (version 1.3.0.5).