Project description:We developed a non-invasive ex vivo HT29 cell-based minimal model to fingerprint the mucosa-associated microbiota fraction in humans. HT29 cell-associated fractions were characterized by the universal phylogenetic array platform HTF-Microbi.Array, both in presence or in absence of a TNF-M-NM-1-mediated pro-inflammatory stimulus. A high taxonomical level fingerprint profiling of the mucosa-associated microbiota was performed on a group of 12 breast-fed infants and 6 adults (used as controls). Relative abundance of the bacterial species was assessed by using a so-called HTF-Microbi.Array, based on a ligation detection reaction (LDR) - Univerasal array (UA) assay, capable of correctly identify up to 31 intestinal bacterial groups, covering up to 95% of the human gut microbiota
Project description:The link between the gut microbiota and the human physiological state has been demonstrated in recent years. High gut microbiota diversity has been linked to many beneficial functions necessary or human health, while dysbiosis has been correlated to different pathological states. In this context, the study of the gut microbiota results of high relevance been necessary the development of different techniques capable of characterizing this complex ecosystem. Metaproteomics has been proved useful in the characterization of complex protein samples becoming a suitable tool for the study of these microbial communities. However, due to the complexity of these samples, protein extraction protocols may affect metaproteomics results. In this context, we evaluated stool sample processing (SSP) and microbial cell disruption, assessing the impact of different protocol modifications in the number of peptides and proteins identified. We compared different stool processing conditions and microbial cell disruption methods in terms of protein and peptide identifications and taxonomic profiles.
Project description:The gut microbiota is an essential contributor to human health and disease and offers an extensive resource of enzymes. Although functional metagenomics methods could predict a correlation between enzyme abundance and functional activity, many enzymes in the microbiome still remain uncharacterized. To discover the differing activities between similar annotated proteins in microbiome, approaches capable of detecting biochemical activity with identification of responsible microbes and enzymes are needed. α-Galactosidases (AGALs) are abundant in the host gut microbiota for hydrolysis of galactooligosaccharides, galactose-containing polysaccharides and glycoconjugates, and have multiple biotechnological applications with increasing demand of global AGAL market, such as food ingredients, animal feed, and biomedical sectors. However, many gut microbial AGALs still lack functional biochemical identification, which limits their usage in industrial and therapeutic applications.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health. Hybridization of the samples against a common reference of gDNA isolated from L. plantarum 299v
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:The aim of this project was to explore the role of gut microbiota in the development of small intestine. The gut microbiota from different groups was used to treat the mice for 1 or 2 weeks. Then the small intestine samples were collected. The RNA was used for the RNA-seq analysis to search the role of gut microbiota in the development of small intestine. Groups: IMA100 mean gut microbiota from Alginate oligosaccharide 100mg/kg treated mice; IMA10 mean gut microbiota from Alginate oligosaccharide 10mg/kg treated mice; IMC mean gut microbiota from control group mice (dosed with water); Sa mean dosed with saline (no gut microbiota). "1" mean dosed for 1 week, "2" means dosed for 2 weeks.