Project description:The transcriptome profiling five tissues of juvenile Eriocheir sinensis, including gill, muscle, thoracic ganglion, eyestalk and hepatopancreas, were sequenced to get the basic dataset for constructed a genome-scale metabolic network model for E. sinensis. The model was used to predict the optimal nutrient requirements of E. sinensis in feed and suggestions for feed improvement were put forward based on the simulation results.
2022-06-30 | GSE182818 | GEO
Project description:Discovery of novel members of the genera Carlavirus and Potexvirus, and detection of Nepovirus, Cilevirus, Betacarmovirus and Tobamovirus members in a single Hibiscus rosa-sinensis plant in Colombia using Metagenomic Sequencing
Project description:Ophiocordyceps sinensis (Berk.) Sacc., a complex of larval carcass (sclerotium) and stroma formed by the fungus of Hirsutella sinensis infecting Hepialidae insect larvae, whose fruiting body is also the main fungal structure used for taxonomic identification. However, the induction of fruiting body is still inefficient and the high cost resulting in the large-scale artificial cultivation of this fungus has been unsuccessful in China.In this study,important factors and target genes associated with the fruiting body induction during the development of O. sinensis were identified, providing a basic molecular mechanism for facilitating the large-scale artificial cultivation of O. sinensis.
Project description:Ophiocordyceps sinensis (Berk.) Sacc., a complex of larval carcass (sclerotium) and stroma formed by the fungus of Hirsutella sinensis infecting Hepialidae insect larvae, whose fruiting body is also the main fungal structure used for taxonomic identification. However, the induction of fruiting body is still inefficient and the high cost resulting in the large-scale artificial cultivation of this fungus has been unsuccessful in China.In this study,important factors and target genes associated with the fruiting body induction during the development of O. sinensis were identified, providing a basic molecular mechanism for facilitating the large-scale artificial cultivation of O. sinensis.
Project description:MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. Therefore, we employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in Hibiscus syriacus. Collectively, this study provides the first reliable draft of the Hibiscus syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in Hibiscus syriacus.
2017-09-08 | GSE99329 | GEO
Project description:Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots
Project description:With its 2.5 Mb DNA genome packed in amphora-shaped particles of bacterium-like dimension (1.2 µm in length, 0.5 µm in diameter), the Acanthamoeba-infecting Pandoravirus salinus remained the most spectacular and intriguing virus since its description in 2013. Following its isolation from shallow marine sediment off the coast of central Chile, that of its relative Pandoravirus dulcis from a fresh water pond near Melbourne, Australia, suggested that they were the first representatives of an emerging worldwide-distributed family of giant viruses. This was further suggested when P. inopinatum discovered in Germany, was sequenced in 2015. We now report the isolation and genome sequencing of three new strains (P. quercus, P.neocaledonia, P. macleodensis) from France, New Caledonia, and Australia. Using a combination of transcriptomic, proteomic, and bioinformatic analyses, we found that these six viruses share enough distinctive features to justify their classification in a new family, the Pandoraviridae, distinct from that of other large DNA viruses.