Project description:Metaproteomes of individual Trichodesmium colonies collected from a single location in the Carribbean sea (65.22W, 17.02N) at 17:00 local time. Some colonies were associated with auto-fluorescent mineral particles. Their proteomes were analyzed individually to investigate the effect of the minerals on colony physiology.
Project description:Diel proteomes of Trichodesmium colonies sampled from the field on March 10, 2018 from the Eastern subtropical Atlantic at 65 22.420W 17 0.284 N. These proteomes inform a broad study of diel proteome oscillations in Trichodesmium that support simultaneous photosynthesis and nitrogen fixation during the day.
Project description:Evaluation of short-read-only, long-read-only, and hybrid assembly approaches on metagenomic samples demonstrating how they affect gene and protein prediction which is relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic, and metaproteomic data to evaluate the metagenomic-based protein predictions.
Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
Project description:To understand the ecophysiology of Sulfurihydrogenibium spp. in situ, integrated metagenomic, metatranscriptomic and metaproteomic analyses were conducted on a microbial community from Narrow Gauge at Mammoth Hot Springs, Yellowstone National Park.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
Project description:The filamentous diazotrophic cyanobacteria Trichodesmium spp. supply fixed nitrogen (N) to the N-depleted oligotrophic oceans where their growth is often limited by the low availability of phosphorus(P) and/or iron. Previous studies have mostly been focused on the effects of ocean acidification on Trichodesmium under nutrient sufficient or iron-limited conditions. Only a few studies have examined the impacts of ocean acidification on Trichodesmium grown at low P concentrations using non-steady-state batch cultures. Here we cultured Trichodesmium using P-limited continuous cultures (chemostat) to mimic steady-state oceanic low P condition, and used comparative NGS-derived Trichodesmium transcriptome profiling (RNA-seq) analysis to find differentially expressed genes and cellular pathways in response to acidification.
Project description:Analysis used total RNA samples of individual brains of low hygienic strain worker bees that were derived from experimental colonies combined of low hygienic genotypes (L pure colonies) resp. low and high hygienic genotypes (L/H mixed colonies). Four-condition experiment: individuals that did perform hygienic behavior (uncapping) vs individuals that did not perform hygienic behavior (non-hygienic); individuals from L pure colonies vs individuals from L/H mixed colonies. A total of 76 biological replicates was analyzed, subdivided into 24 individuals that did perform hygienic behavior in mixed colonies; 24 individuals that did perform hygienic behavior in pure colonies; 14 individuals that did not perform hygienic behavior in mixed colonies; 14 individuals that did not perform hygienic behavior in pure colonies. Each individual brain RNA sample was divided into two subsamples labeled with cy3 resp. cy5. Loop Design was applied so that each individual brain sample was directly compared to at least two other samples.