Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:The emergence and spread of polymyxin resistance, especially among Klebsiella pneumoniae isolates threaten the effective management of infections. This study profiled for polymyxin resistance mechanisms and investigated the activity of polymyxins plus vancomycin against carbapenem- and polymyxin-resistant K. pneumoniae.
2023-10-13 | PXD045685 | JPOST Repository
Project description:Genomic Epidemiology of Klebsiella Isolates Causing Bacteraemia
Project description:The increasing antibiotic resistance of Klebsiella pneumoniae poses a serious threat to global public health. To investigate the antibiotic resistance mechanism of Klebsiella pneumonia, we performed gene expression profiling analysis using RNA-seq data for clinical isolates of Klebsiella pneumonia, KPN16 and ATCC13883. Our results showed that mutant strain KPN16 is likely to act against the antibiotics through increased increased butanoate metabolism and lipopolysaccharide biosynthesis, and decreased transmembrane transport activity.
Project description:In this study, we introduce BacDrop, a bacterial droplet-based high throughput scRNA-seq technology that can be applied to large cell numbers. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and elucidated their critical, genome-wide heterogeneity in the absence and presence of antibiotic perturbations.
Project description:Bacteria can circumvent the effect of antibiotics by transitioning to a poorly understood physiological state that does not involve conventional genetic elements of resistance. Here we examine antibiotic susceptibility with a Class A β-lactamase+ invasive strain of Klebsiella pneumoniae that was isolated from a lethal outbreak within laboratory colonies of Chlorocebus aethiops sabaeus monkeys. Bacterial responses to the ribosomal synthesis inhibitors streptomycin and doxycycline resulted in distinct proteomic adjustments that facilitated decreased susceptibility to each antibiotic.