Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Project description:Bats harbour various viruses without severe symptoms and act as natural reservoirs. This tolerance of bats toward viral infections is assumed to be originated from the uniqueness of their immune system. However, how the innate immune response varies between primates and bats remains unclear. To illuminate differences in innate immune responses among animal species, we performed a comparative single-cell RNA-sequencing analysis on peripheral blood mononuclear cells (PBMCs) from four species including Egyptian fruit bats inoculated with various infectious stimuli.
Project description:Bats harbor high-impact zoonotic viruses in absence of clinical disease, which has been recently associated with unique features of their immune system. They seem to restrict inflammation and possibly limit disease manifestation to a minimum. In-depth characterization of cellular immunity in bats is yet largely missing, and imprinting of age and development on immune cell compartments remains unexplored. We employed single-cell transcriptomics and established immunostaining panels to investigate the immune cell populations peripheral blood for juvenile and adult Egyptian Rousette bats (ERB).
Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Project description:Bats are a widespread group of mammals thought to host a variety of viruses and other disease agents. Here we performed RNA-sequencing on Artibeus jamaicensis infected with the New World arenavirus, Tacaribe Virus, to generate an extensive bat transcriptome.
Project description:Bats are natural reservoirs for a large range of emerging viruses that cause lethal diseases in humans and domestic animals, but remain asymptomatic in bats. Understanding the host-pathogen interactions relies on the availability of relevant models including susceptible cells, derived from viral target tissues. To obtain bat cell types pertinent for the study of viral infection, we applied somatic reprogramming approach to Pteropus primary cells as initial substrates. Using the novel combination of three transcription factors: ESRRB, CDX2 and c-MYC, we generated reprogrammed cells exhibiting stem cells features.
Project description:Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected Jamaican fruit bats with the bat-derived influenza A virus H18N11. Using comparative single-cell RNA sequencing, we generated a single-cell atlas of the Jamaican fruit bat intestine and mesentery, the target organs of infection. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was prominent in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this virus. Our study provides insight into the virus-host relationship and thus serves as a fundamental resource for further characterization of bat immunology.