Project description:Here we studied the glycation of bovine milk proteins by lactose as dominant sugar in milk and hexoses using tandem mass spectrometry (CID and ETD mode). In a bottom-up proteomics approach after enriching glycated peptides by boronate affinity chromatography, first we could identify 260 lactosylated peptides corresponding to 124 lactosylation sites in 28 bovine milk proteins in raw milk, raw colostrum, three brands of pasteurized milk, three brands of UHT milk, and five brands of infant formula. The same regular and additionally two lactose-free milk products (pasteurized and UHT milk) where lactose is enzymatically cleaved into the more reactive hexoses were analyzed in terms of hexosylation sites that resulted in identification of 124 hexosylated tryptic peptides corresponding to 86 glycation sites in 17 bovine milk proteins. In quantitative terms glycation increased from raw milk to pasteurized milk to UHT milk and infant formula, i.e., with the harsher processing conditions. Lactose-free milk contained significantly higher hexosylation degrees than the corresponding regular milk product.
2016-01-11 | PXD003054 | Pride
Project description:Microbiome of Powdered Infant Formula
| PRJNA626565 | ENA
Project description:Environment microbiome characterization for Powdered Infant formula Production Sites
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:The majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs. Piglets (female, male) were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food.
Project description:Microbiota assembly in the infant gut is influenced by time and duration of dietary exposure to breast-milk, infant formula and solid foods.
Project description:Diet-microbe interactions play a crucial role in infant development and modulation of the early-life microbiota. The genus Bifidobacterium dominates the breast-fed infant gut, with strains of B. longum subsp. longum (B. longum) and B. longum subsp. infantis (B. infantis) particularly prevalent within the early-life microbiota. Although, transition from milk to a more diversified diet later in infancy initiates a shift to a more complex microbiome, with concurrent reductions in Bifidobacterium abundance, specific strains of B. longum may persist in individual hosts for prolonged periods of time. Here, we sought to investigate the adaptation of B. longum to the changing infant diet during the early-life developmental window. Genomic characterisation of 75 strains isolated from nine either exclusively breast- or formula-fed infants in the first 18 months of their lives revealed subspecies- and strain-specific intra-individual genomic diversity with respect to glycosyl hydrolase families and enzymes, which corresponded to different dietary stages. Complementary phenotypic growth studies indicated strain-specific differences in human milk oligosaccharide and plant carbohydrate utilisation profiles between and within individual infants, while proteomic profiling identified proteins involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum subspecies/strain genomic and carbohydrate utilisation diversity, which aligns with a changing nutritional environment i.e. moving from breast milk to a solid food diet. These data provide additional insights into possible mechanisms responsible for the competitive advantage of this bifidobacterial species and their long-term persistence in a single host and may contribute to rational development of new dietary therapies for this important development window.
Project description:Breastfeeding has been associated with long lasting health benefits. Nutrients and bioactive components of human breast milk promote cell growth, immune development, and shield the infant gut from insults and microbial threats. The molecular and cellular events involved in these processes are ill defined. We have established human pediatric enteroids and interrogated maternal milk’s impact on epithelial cell maturation and function in comparison with commercial infant formula. Colostrum applied apically to pediatric enteroid monolayers reduced ion permeability, stimulated epithelial cell differentiation, and enhanced tight junction function by upregulating occludin amount. Breast milk heightened the production of antimicrobial peptide -defensin 5 by goblet and Paneth cells, and modulated cytokine production, which abolished apical release of pro-inflammatory GM-CSF. These attributes were not found in commercial infant formula. Epithelial cells exposed to breast milk elevated apical and intracellular pIgR amount and enabled maternal IgA translocation. Proteomic data revealed a breast milk-induced molecular pattern associated with tissue remodeling and homeostasis. Using a novel ex vivo pediatric enteroid model, we have identified cellular and molecular pathways involved in human milk-mediated improvement of human intestinal physiology and immunity.
Project description:Human milk oligosaccharides (HMOs) are highly diverse complex carbohydrates secreted in human milk. HMOs are indigestible by the infant and instead are metabolized by bifidobacteria in the infant gut microbiome to produce molecules that promote infant health and development. 2´fucosyllactose (2´FL) is an abundant HMO and is utilized by Bifidobacterium longum subsp. infantis, a predominant member of the infant gut microbiome. Currently, there is not a scientific consensus on how or if bifidobacteria metabolize the fucose portion of 2´FL or free fucose. This proteomic analysis was conducted in order to characterize the metabolic pathway by which B. infantis utilizes fucose.
Project description:The objective of this study is to investigate the changes of the breast milk proteome from four individual mothers over a six month lactation period by shotgun proteomic techniques, because a comprehensive understanding of the human milk proteome may lead to better understanding of the needs of infants. This may contribute to the improvement of infant formula.