Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to Chlorhexidine diacetate, which involved initial growth inhibition and metabolism. Keywords: Transcriptome study
Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to Chlorhexidine diacetate, which involved initial growth inhibition and metabolism. Experiment Overall Design: We conducted three independent microarray experiments (biological replicates) in the absence (control) and the presence (experimental) of Chlorhexidine diacetate. We calculated fold change as the ratio between the signal averages of three untreated (control) and three chlorhexidine diacetate-treated (experimental) cultures for 0, 10 and 60 min exposures.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:Microarray analysis for the biofilm cells of Pseudomonas aeruginosa PA14 wild-type vs the tpbA (PA14_13660) mutant in LB medium at 4 and 7 h at 37C
Project description:Microarray analysis for the biofilm cells of Pseudomonas aeruginosa PA14 wild-type vs the tpbA (PA14_13660) mutant in LB medium at 4 and 7 h at 37C Microarray analysis for the biofilm cells of Pseudomonas aeruginosa PA14 wild-type vs the tpbA (PA14_13660) mutant in LB medium at 4 and 7 h at 37C.
Project description:Because Pseudomonas aeruginosa is a common pathogen that frequently contacts with Chlorhexidine digluconate (a regular antiseptic), then adaptations against Chlorhexidine were tested. In com-parison with the parent strain, the Chlorhexidine-adapted strain formed smaller colonies with the downregulation of several metabolic pathways (proteomic analysis) and increased resistance against colistin (an antibiotic for the current antibiotic-resistant bacteria), partly through the modification of L-Ara4N in the lipopolysaccharide at the outer membrane (proteomic analysis). Chlorhexidine-adapted strain formed dense liquid-solid interface biofilm with cell aggregation partly due to the Chlorhexidine-induced overexpression of psl (exopolysaccharide-encoded gene) through LadS/GacSA pathway (c-di-GMP-independence) in 12 h biofilms and maintained the ag-gregation with SiaD-mediated c-di-GMP dependence in 24 h biofilms as evaluated by polymerase chain reaction (PCR). The addition of Ca2+ in the Chlorhexidine-adapted strain facilitated several Psl-associated genes, indicating an impact of Ca2+ in Psl production. The sessile Chlorhexi-dine-treated bacteria demonstrated a lower expression of IL-6 and IL-8 on fibroblasts and mac-rophages than the parent strain, indicating less inflammatory reactions from the Chlorhexidine use. However, the Chlorhexidine-treated bacteria induces similar severity in 14 days of mouse wounds as indicated by wound score and bacterial burdens. In conclusion, Chlorhexidine induced psl over-expression and colistin cross-resistance that might be clinically important.
Project description:DNA microarray analysis was employed to investigate the transcriptome response to nitric oxide in Pseudomonas aeruginosa. We focused on the role played by the nitric oxide-response regulators DNR and FhpR and an oxygen-response regulator ANR in the response. The transcriptome profiles of the P. aeruginosa strains before and after exposure to nitric oxide under the microaerobic conditions were analyzed. Wild type, its anr, dnr, and fhpR mutants, and the anr mutant that express dnr were used for the analyses.